Prime geodesic theorem for compact even-dimensional locally symmetric spaces of real rank one

Muharem Avdispahić and Dženan Gušić

Abstract

We improve the error term in DeGeorge's prime geodesic theorem for compact, even-dimensional, locally symmetric Riemannian manifolds of strictly negative sectional curvature.

Index Terms-locally symmetric spaces, prime geodesic theorem, Selberg zeta and Ruelle zeta function.

I. Introduction

LET $Y=\Gamma \backslash G / K=\Gamma \backslash X$ be a compact, n-dimensional (n even), locally symmetric Riemannian manifold with strictly negative sectional curvature, where G is a connected semi-simple Lie group of real rank one, K is a maximal compact subgroup of G and Γ is a discrete, co-compact, torsion-free subgroup of G.

We assume that the Riemannian metric over Y induced from the Killing form is normalized so that the sectional curvature of Y varies between -4 and -1 .

As well known, a prime geodesic C_{γ} over Y corresponds to a conjugacy class of a primitive hyperbolic element $\gamma \in \Gamma$.

Let $\pi_{\Gamma}(x)$ be the number of prime geodesics C_{γ} of length $l(\gamma)$ whose norm $N(\gamma)=e^{l(\gamma)}$ is not larger than x (see Section 3).

DeGeorge [7] derived the following form of the prime geodesic theorem with an error term

$$
\begin{equation*}
\pi_{\Gamma}(x)=\int_{1}^{\log x} \frac{e^{\alpha u}}{u} d u+O\left(x^{\eta}\right) \tag{1}
\end{equation*}
$$

as $x \rightarrow+\infty$, where η is a constant such that $\left(1-\frac{1}{2 n}\right) \alpha \leq$ $\eta<\alpha$ and $\alpha=n+q-1$, with $q=0,1,3,7$ depending on whether X is a real, a complex or a quaternionic hyperbolic space or the hyperbolic Cayley plane, respectively (see, sections I and V of [7]).

Integrating (1) by parts, one easily deduces a weaker form of the prime geodesic theorem

$$
\begin{equation*}
\pi_{\Gamma}(x) \sim \frac{x^{\alpha}}{\alpha \log x} \tag{2}
\end{equation*}
$$

[^0]as $x \rightarrow+\infty$, where $f(x) \sim g(x)$ means $\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=1$.
Note that (2) was also proved by Gangolli [12] and by Gangolli-Warner [14] when Y has a finite volume.

By adapting Hejhal's techniques [16], [17], Park [19] refined the corresponding result of Gangolli-Warner [14] for real hyperbolic manifolds with cusps. Inspired by Randol's approach [20], we [1] further improved Park's result [19] to the form

$$
\begin{align*}
\pi_{\Gamma}(x)= & \sum_{\frac{3}{2} d_{0}<s_{j}(k) \leq 2 d_{0}}(-1)^{k} \operatorname{li}\left(x^{s_{j}(k)}\right) \tag{3}\\
& +O\left(x^{\frac{3}{2} d_{0}}(\log x)^{-1}\right)
\end{align*}
$$

as $x \rightarrow+\infty$,
where $d_{0}=\frac{1}{2}(n-1),\left(s_{j}(k)-k\right)\left(2 d_{0}-k-s_{j}(k)\right)$ is a small eigenvalue in $\left[0, \frac{3}{4} d_{0}^{2}\right]$ of Δ_{k} on $\pi_{\sigma_{k}, \lambda_{j}(k)}$ with $s_{j}(k)$ $=d_{0}+\mathrm{i} \lambda_{j}(k)$ or $s_{j}(k)=d_{0}-\mathrm{i} \lambda_{j}(k)$ in $\left(\frac{3}{2} d_{0}, 2 d_{0}\right], \Delta_{k}$ is the Laplacian acting on the space of k-forms over Y and $\pi_{\sigma_{k}, \lambda_{j}(k)}$ is the principal series representation.
Note that the error term in (3) is in accordance with the best known estimate in the case of compact Riemann surfaces (see, e.g., [20], [4]).
The main purpose of this paper is to improve the error term in the prime geodesic theorem (1) of DeGeorge [7] for compact, even-dimensional locally symmetric Riemannian manifolds of strictly negative sectional curvature so to correspond to (3).
We shall use the zeta functions of Selberg and Ruelle described by Bunke and Olbrich [6]. In particular, we utilize the fact that for even n these functions are meromorphic functions of order not larger than n (see, [2], [3]).

II. Preliminaries

In the sequel, we follow the notation of [6].
Assume that G is a linear group.
Let $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ be the Cartan decomposition of the Lie algebra \mathfrak{g} of G, \mathfrak{a} a maximal abelian subspace of \mathfrak{p} and M the centralizer of \mathfrak{a} in K with the Lie algebra \mathfrak{m}.

Let $\Phi(\mathfrak{g}, \mathfrak{a})$ be the root system and $\Phi^{+}(\mathfrak{g}, \mathfrak{a}) \subset \Phi(\mathfrak{g}, \mathfrak{a})$ a system of positive roots. Let

$$
\mathfrak{n}=\sum_{\alpha \in \Phi^{+}(\mathfrak{g}, \mathfrak{a})} \mathfrak{n}_{\alpha}
$$

be the sum of the root spaces. Then, the Iwasawa decomposition $G=K A N$ corresponds to the Iwasawa decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$. Define

$$
\rho=\frac{1}{2} \sum_{\alpha \in \Phi^{+}(\mathfrak{g}, \mathfrak{a})} \operatorname{dim}\left(\mathfrak{n}_{\alpha}\right) \alpha .
$$

Let \mathfrak{a}^{+}be the half line in \mathfrak{a} on which the positive roots take positive values. Put $A^{+}=\exp \left(\mathfrak{a}^{+}\right) \subset A$.

Let $\sigma \in \hat{M}$.
By [6, p. 27], there is an element $\gamma \in R(K)$ such that $i^{*}(\gamma)$ $=\sigma$ (see also [6, p. 23, Prop. 1.2]). Here, $i^{*}: R(K) \rightarrow R(M)$ is the restriction map induced by the embedding $i: M \hookrightarrow K$, where $R(K)$ and $R(M)$ are the representation rings over \mathbb{Z} of K and M, respectively.

In [6, p. 28], the authors introduced the operators $A_{d}(\gamma, \sigma)$ and $A_{Y, \chi}(\gamma, \sigma)$. These operators correspond to spaces X_{d} and Y, respectively. Here, χ is a finite-dimensional unitary representation of Γ and X_{d} denotes a compact dual space of the symmetric space X.

Let $E_{A}($.$) be the family of spectral projections of a normal$ operator A. Put

$$
m_{\chi}(s, \gamma, \sigma)=\operatorname{Tr} E_{A_{Y, \chi}(\gamma, \sigma)}(\{s\}),
$$

and

$$
m_{d}(s, \gamma, \sigma)=\operatorname{Tr} E_{A_{d}(\gamma, \sigma)}(\{s\})
$$

for $s \in \mathbb{C}$.

Definition 1. [6, p. 49, Def. 1.17] Let $\sigma \in \hat{M}$. Then, $\gamma \in$ $R(K)$ is called σ-admissible if $i^{*}(\gamma)=\sigma$ and $m_{d}(s, \gamma, \sigma)$ $=P_{\sigma}(s)$ for all $0 \leq s \in L(\sigma)$.

Here, $P_{\sigma}(s)$ resp. $L(\sigma)$ denote the polynomial resp. the lattice given by [6, Definition 1.13, p. 47; see also p. 40]. In particular, $L(\sigma)=T\left(\epsilon_{\sigma}+\mathbb{Z}\right)$, where T and $\epsilon_{\sigma} \in\left\{0, \frac{1}{2}\right\}$ are given by the same definition.

By [6, p. 49, Lemma 1.18], there exists a σ-admissible $\gamma \in R(K)$ for every $\sigma \in \hat{M}$.

III. Zeta functions

Since $\Gamma \subset G$ is co-compact and torsion-free, there are only two types of conjugacy classes: the class of the identity $e \in \Gamma$ and classes of hyperbolic elements.

Let Γ_{h} resp. $\mathrm{P} \Gamma_{\mathrm{h}}$ denote the set of the Γ-conjugacy classes of hyperbolic resp. primitive hyperbolic elements in Γ.

It is well known that every hyperbolic element $g \in G$ is conjugated to some element $a_{g} m_{g} \in A^{+} M$ (see, e.g., [12][14]). Following [6, p. 59], we put $l(g)=\left|\log \left(a_{g}\right)\right|$.

For $s \in \mathbb{C}$, $\operatorname{Re}(s)>\rho$, the Selberg zeta function is defined by the infinite product (see, [6, p. 97])

$$
\begin{aligned}
& Z_{S, \chi}(s, \sigma) \\
= & \prod_{\gamma_{0} \in \mathrm{P} \mathrm{\Gamma}_{\mathrm{k}}} \prod_{k=0}^{+\infty} \operatorname{det}\left(1-\left(\sigma\left(m_{\gamma_{0}}\right) \otimes \chi\left(\gamma_{0}\right) \otimes S^{k}\left(\operatorname{Ad}\left(m_{\gamma_{0}} a_{\gamma_{0}}\right)_{\overline{\mathfrak{n}}}\right)\right) e^{-(s+\rho) l\left(\gamma_{0}\right)}\right)
\end{aligned}
$$

where σ and χ are finite-dimensional unitary representations of M and Γ, respectively, S^{k} is the k-th symmetric power of an endomorphism, $\overline{\mathfrak{n}}=\theta \mathfrak{n}$ and θ is the Cartan involution of \mathfrak{g}.

For $s \in \mathbb{C}, \operatorname{Re}(s)>2 \rho$, the Ruelle zeta function is defined by the infinite product (see, [6, p. 96])

$$
Z_{R, \chi}(s, \sigma)=\prod_{\gamma_{0} \in \mathrm{P} \Gamma_{\mathrm{h}}} \operatorname{det}\left(1-\left(\sigma\left(m_{\gamma_{0}}\right) \otimes \chi\left(\gamma_{0}\right)\right) e^{-s l\left(\gamma_{0}\right)}\right)^{(-1)^{n-1}}
$$

As known, the Ruelle zeta function can be expressed in terms of Selberg zeta functions (see, e.g., [9]-[11]). By [6, pp. 99100], there exist sets $I_{p}=\{(\tau, \lambda) \mid \tau \in \hat{M}, \lambda \in \mathbb{R}\}$ such that

$$
\begin{align*}
& Z_{R, \chi}(s, \sigma) \\
= & \prod_{p=0}^{n-1} \prod_{(\tau, \lambda) \in I_{p}} Z_{S, \chi}(s+\rho-\lambda, \tau \otimes \sigma)^{(-1)^{p}} . \tag{4}
\end{align*}
$$

Let Λ resp. Υ denote the set of all elements λ resp τ that appear in (4).

Note that [6, p. 113, Theorem 3.15] gives precise description of the locations and the orders of the singularities of $Z_{S, \chi}(s, \sigma)$.

We have proved the following theorem.

Theorem A. [2, p. 528, Th. 4.1] If γ is σ-admissible, then there exist entire functions $Z_{1}(s), Z_{2}(s)$ of order at most n such that

$$
Z_{S, \chi}(s, \sigma)=\frac{Z_{1}(s)}{Z_{2}(s)}
$$

where the zeros of $Z_{1}(s)$ correspond to the zeros of $Z_{S, \chi}(s, \sigma)$ and the zeros of $Z_{2}(s)$ correspond to the poles of $Z_{S, \chi}(s, \sigma)$. The orders of the zeros of $Z_{1}(s)$ resp. $Z_{2}(s)$ equal the orders of the corresponding zeros resp. poles of $Z_{S, \chi}(s, \sigma)$.

IV. AuXiliary results

Lemma 2. If γ is σ-admissible, then

$$
P_{\sigma}(w)=\sum_{k=0}^{\frac{n}{2}-1} p_{n-2 k-1} w^{n-2 k-1}
$$

where

$$
\begin{aligned}
p_{n-2 k-1} & =\frac{2 T}{\left(\frac{n}{2}-k-1\right)!} c_{-\left(\frac{n}{2}-k\right)}, k=0,1, \ldots, \frac{n}{2}-1 \\
c_{-\frac{n}{2}} & =\frac{\left(\frac{n}{2}-1\right)!}{2 T}
\end{aligned}
$$

and the numbers c_{k} are defined by the asymptotic expression

$$
\operatorname{Tr} e^{-t A_{d}(\gamma, \sigma)^{2}} \stackrel{t \rightarrow 0}{\sim} \sum_{k=-\frac{n}{2}}^{\infty} c_{k} t^{k} .
$$

Proof. By [6, pp. 47-48], $P_{\sigma}(0)=0, P_{\sigma}(-w)=-P_{\sigma}(w)$ and $P_{\sigma}(w)=w \cdot Q_{\sigma}(w)$, where Q_{σ} is an even polynomial. Hence, P_{σ} is an odd polynomial. Moreover, P_{σ} is a monic polynomial of degree $n-1$ (see, e.g., [5, pp. 17-19], [22, pp. 240-243]).

Put

$$
P_{\sigma}(w)=\sum_{k=0}^{\frac{n}{2}-1} p_{n-2 k-1} w^{n-2 k-1}, p_{n-1}=1
$$

By [6, p. 118], $Q_{\sigma}(w)=\sum_{k=0}^{\frac{n}{2}-1} q_{n-2 k-2} w^{n-2 k-2}$, where $q_{2 i}$ $=\frac{2 T}{i!} c_{-(i+1)}, i=0,1, \ldots, \frac{n}{2}-1$. In other words,

$$
p_{n-2 k-1}=q_{n-2 k-2}=\frac{2 T}{\left(\frac{n}{2}-k-1\right)!} c_{-\left(\frac{n}{2}-k\right)}
$$

$k=0,1, \ldots, \frac{n}{2}-1$. This completes the proof.

Lemma 3. Let H be a half-plane of the form $\operatorname{Re}(s)<$ $-(2 \rho+\varepsilon), \varepsilon>0$, minus the union of a set of congruent disks about the points $-s, s \in T\left(\mathbb{N}-\epsilon_{\tau \otimes \sigma}\right)+\rho-\lambda, \lambda \in \Lambda$, $\tau \in \Upsilon$. Then there exists a constant C_{R} such that

$$
\left|\frac{Z_{R, \chi}^{\prime}(s, \sigma)}{Z_{R, \chi}(s, \sigma)}\right| \leq C_{R}|s|^{n-1}
$$

for $s \in H$.
Proof. The identity (4) implies

$$
\begin{align*}
& \frac{Z_{R, \chi}^{\prime}(s, \sigma)}{Z_{R, \chi}(s, \sigma)} \\
= & \sum_{p=0}^{n-1}(-1)^{p} \sum_{(\tau, \lambda) \in I_{p}} \frac{Z_{S, \chi}^{\prime}(s+\rho-\lambda, \tau \otimes \sigma)}{Z_{S, \chi}(s+\rho-\lambda, \tau \otimes \sigma)} . \tag{5}
\end{align*}
$$

Recall [6, p. 113, Theorem 3.15]. Now, it is enough to prove that if K is a half-plane of the form $\operatorname{Re}(s)<-(\rho+\varepsilon), \varepsilon>0$, minus the union of a set of congruent disks about the points $-s, s \in T\left(\mathbb{N}-\epsilon_{\tau \otimes \sigma}\right), \tau \in \Upsilon$, then there exists a constant C_{S} such that

$$
\left|\frac{Z_{S, \chi}^{\prime}(s, \tau \otimes \sigma)}{Z_{S, \chi}(s, \tau \otimes \sigma)}\right| \leq C_{S}|s|^{n-1}
$$

for $s \in K$ and all $\tau \in \Upsilon$.
The proof is independent of the choice of τ. We simplify our notation by omitting the latter.

By [6, p. 118, Th. 3.19], $Z_{S, \chi}(s, \sigma)$ has the representation

$$
\begin{aligned}
Z_{S, \chi}(s, \sigma)= & \operatorname{det}\left(A_{Y, \chi}(\gamma, \sigma)^{2}+s^{2}\right) \operatorname{det}\left(A_{d}(\gamma, \sigma)+s\right)^{-\frac{2 \operatorname{dim}(\chi) \chi(Y)}{\chi\left(X_{d}\right)}} . \\
& \exp \left(\frac{\operatorname{dim}(\chi) \chi(Y)}{\chi\left(X_{d}\right)} \sum_{m=1}^{\frac{n}{2}} c_{-m} \frac{s^{2 m}}{m!}\left(\sum_{r=1}^{m-1} \frac{1}{r}-2 \sum_{r=1}^{2 m-1} \frac{1}{r}\right)\right) .
\end{aligned}
$$

Hence, (see, [6, pp. 120-122])

$$
\begin{align*}
& Z_{S, \chi}(-s, \sigma) \\
= & Z_{S, \chi}(s, \sigma) \cdot\left(\frac{\operatorname{det}\left(A_{d}(\gamma, \sigma)-s\right)}{\operatorname{det}\left(A_{d}(\gamma, \sigma)+s\right)}\right)^{-\frac{2 \operatorname{dim}(\chi) \chi(Y)}{\chi\left(X_{d}\right)}} \\
= & Z_{S, \chi}(s, \sigma) \cdot\left(\frac{D^{+}(s)}{D^{-}(s)}\right)^{-\frac{2 \operatorname{dim}(\chi) \chi(Y)}{\chi\left(X_{d}\right)}} \tag{6}\\
= & Z_{S, \chi}(s, \sigma) \cdot \\
& \exp \left(-\frac{\pi}{T} \int_{0}^{s} P_{\sigma}(w)\left\{\begin{array}{ll}
\tan \left(\frac{\pi w}{T}\right), & \epsilon_{\sigma}=\frac{1}{2} \\
-\cot \left(\frac{\pi w}{T}\right), & \epsilon_{\sigma}=0
\end{array}\right\} d w\right)^{-\frac{2 \operatorname{dim}(x)(\gamma)}{\chi\left(X_{d}\right)}} \\
= & Z_{S, \chi}(s, \sigma) \cdot e^{K \int_{0}^{s} P_{\sigma}(w)\left\{\begin{array}{ll}
\tan \left(\frac{\pi w}{T}\right), & \epsilon_{\sigma}=\frac{1}{2} \\
-\cot \left(\frac{\pi w}{T}\right), & \epsilon_{\sigma}=0
\end{array}\right\} d w .} .
\end{align*}
$$

Consider the case $\epsilon_{\sigma}=\frac{1}{2}$. The case $\epsilon_{\sigma}=0$ is discussed similarly.

The identity (6) implies

$$
-\frac{Z_{S, \chi}^{\prime}(-s, \sigma)}{Z_{S, \chi}(-s, \sigma)}=\frac{Z_{S, \chi}^{\prime}(s, \sigma)}{Z_{S, \chi}(s, \sigma)}+K P_{\sigma}(s) \tan \left(\frac{\pi s}{T}\right)
$$

Since $\frac{Z_{S, \chi}^{\prime}(s, \sigma)}{Z_{S, \chi}(s, \sigma)}$ is bounded on every half-plane $\operatorname{Re}(s)>\rho+\varepsilon$, $\varepsilon>0$, we conclude that $\frac{Z_{S, \chi}^{\prime}(-s, \sigma)}{Z_{S, \chi}(-s, \sigma)}$ is bounded on K. Moreover, $\tan \left(\frac{\pi s}{T}\right)$ is bounded on the complement of the union of congruent disks about the points $T\left(k+\frac{1}{2}\right)=T\left(k+\epsilon_{\sigma}\right)$, $k \in \mathbb{Z}$. This completes the proof.

Lemma 4. Let $c, d \in \mathbb{R}, c<d$. If γ is σ-admissible then there exists a sequence $\left\{y_{j}\right\}, y_{j} \rightarrow+\infty$ as $j \rightarrow+\infty$, such that

$$
\frac{Z_{R, \chi}^{\prime}\left(x+\mathrm{i} y_{j}, \sigma\right)}{Z_{R, \chi}\left(x+\mathrm{i} y_{j}, \sigma\right)}=O\left(y_{j}^{2 n}\right)
$$

for $x \in(c, d)$.

Proof. Consider the identity (5).

It is enough to prove that there exists a sequence $\left\{y_{j}\right\}$, $y_{j} \rightarrow+\infty$ as $j \rightarrow+\infty$, such that

$$
\frac{Z_{S, \chi}^{\prime}\left(x+\mathrm{i} y_{j}, \tau \otimes \sigma\right)}{Z_{S, \chi}\left(x+\mathrm{i} y_{j}, \tau \otimes \sigma\right)}=O\left(y_{j}^{2 n}\right)
$$

for $x \in(a, b)$ and all $\tau \in \Upsilon$, where $a=c-\rho, b=d+\rho$.
We consider the interval I_{1} given by it, $t_{0}-1<t \leq t_{0}+1$, where $t_{0}>2 \rho$ is fixed.

It suffices to prove that there exists $y \in\left(t_{0}-1, t_{0}+1\right]$ such that

$$
\begin{equation*}
\frac{Z_{S, \chi}^{\prime}(x+\mathrm{i} y, \tau \otimes \sigma)}{Z_{S, \chi}(x+\mathrm{i} y, \tau \otimes \sigma)}=O\left(y^{2 n}\right) \tag{7}
\end{equation*}
$$

for $x \in(a, b)$ and all $\tau \in \Upsilon$.
Let S_{R} be the set of all singularities of all zeta functions $Z_{S, \chi}(s, \tau \otimes \sigma), \tau \in \Upsilon$. Let $N_{R}(t)$ be the number of elements in S_{R} on the interval i $x, 0<x \leq t$.

Let $N(t)$ be the number of singularities of $Z_{S, \chi}(s, \sigma)$ on the same interval. By [6, Th. 3.15], these singularities are given in terms of eigenvalues of $A_{Y, \chi}\left(\gamma_{\sigma}, \sigma\right)$ for some σ-admissible $\gamma_{\sigma} \in R(K)$. Hence, according to [8, p. 89, Th. 9.1.], $N(t)=D_{1} t^{n}+O\left(t^{n-1}(\log t)^{-1}\right)$ for some explicitly known constant D_{1}. However, the O-term does not improve our result. For the sake of simplicity, we take $N(t)=O\left(t^{n}\right)$. Consequently, $N_{R}(t)=O\left(t^{n}\right)$.
It follows immediately that the number of singularities of $Z_{S, \chi}(s, \sigma)$ on I_{1} is $O\left(t_{0}^{n}\right)$.

Similarly, the number of elements in S_{R} on I_{1} is $O\left(t_{0}^{n}\right)$, i.e., it is at most $\left\lfloor C_{1} t_{0}^{n}\right\rfloor$ for some constant C_{1}.

Denote by I_{2} the interval it, $t_{0}-\frac{3}{4}<t \leq t_{0}+\frac{3}{4}$.
Since $I_{2} \subset I_{1}$, the number of elements in S_{R} on I_{2} is at most $\left\lfloor C_{1} t_{0}^{n}\right\rfloor$.

Let us divide the interval I_{2} into $1+\left\lfloor C_{1} t_{0}^{n}\right\rfloor$ equal intervals. By the Dirichlet principle, one of them does not contain any element from S_{R}. Let i y be the midpoint of such an interval. We shall prove that y satisfies (7) for $x \in(a, b)$ and all $\tau \in$ Υ. The proof does not depend on the choice of $\tau \in \Upsilon$. We simplify our notation by omitting it, i.e., we prove that

$$
\frac{Z_{S, \chi}^{\prime}(x+\mathrm{i} y, \sigma)}{Z_{S, \chi}(x+\mathrm{i} y, \sigma)}=O\left(y^{2 n}\right)
$$

for $x \in(a, b)$.
By Theorem A, $Z_{1}(s)$ and $Z_{2}(s)$ are entire functions of order at most n. Hence, there are canonical product expressions for $Z_{1}(s)$ and $Z_{2}(s)$ of the form (see, e.g., [9, p. 509])

$$
Z_{i}(s)=s^{n_{i}} e^{g_{i}(s)} \prod_{\alpha \in R_{i} \backslash\{0\}}\left(1-\frac{s}{\alpha}\right) \exp \left(\frac{s}{\alpha}+\frac{s^{2}}{2 \alpha^{2}}+\ldots+\frac{s^{n}}{n \alpha^{n}}\right),
$$

$i=1,2$, where R_{i} is the set of zeros of $Z_{i}(s), n_{i}$ is the order of the zero of $Z_{i}(s)$ at $s=0, g_{i}(s)$ is a polynomial of degree at most n.

Therefore,

$$
\begin{aligned}
\frac{Z_{S, \chi}^{\prime}(s, \sigma)}{Z_{S, \chi}(s, \sigma)}= & \frac{1}{s}\left(n_{1}-n_{2}\right)+g_{1}^{\prime}(s)-g_{2}^{\prime}(s) \\
& +\sum_{i=1,2}(-1)^{i-1} \sum_{\alpha \in R_{i} \backslash\{0\}}\left(\frac{s}{\alpha}\right)^{n} \frac{1}{s-\alpha}
\end{aligned}
$$

We have

$$
\begin{aligned}
|\mathrm{i} y-\alpha| & \geq \frac{1}{2} \cdot \frac{\frac{3}{2}}{1+\left\lfloor C_{1} t_{0}^{n}\right\rfloor} \geq \frac{3}{4} \cdot \frac{1}{1+C_{1} t_{0}^{n}} \\
& >\frac{3}{4} \cdot \frac{1}{1+C_{1}\left(y+\frac{3}{4}\right)^{n}} \geq \frac{C_{2}}{y^{n}}
\end{aligned}
$$

for some constant C_{2} and all $\alpha \in R_{i}, i=1,2$.
Now, for a small fixed $\varepsilon>0$ and the choice $s_{x}=x+\mathrm{i} y$, $x \in(a, b)$, we have

$$
\begin{aligned}
\frac{Z_{S, \chi}^{\prime}\left(s_{x}, \sigma\right)}{Z_{S, \chi}\left(s_{x}, \sigma\right)}= & \frac{1}{s_{x}}\left(n_{1}-n_{2}\right)+g_{1}^{\prime}\left(s_{x}\right)-g_{2}^{\prime}\left(s_{x}\right) \\
& +\sum_{k=1}^{8} \sum_{\beta \in A_{k}}\left(\frac{s_{x}}{\beta}\right)^{n} \frac{1}{s_{x}-\beta}
\end{aligned}
$$

where β denotes a singularity of $Z_{S, \chi}(s, \sigma)$ and

$$
\begin{aligned}
& A_{1}=\left\{\beta\left|\beta \in-T\left(\mathbb{N}-\epsilon_{\sigma}\right),|\beta|>\rho+\varepsilon\right\},\right. \\
& A_{2}=\{\beta|0<|\beta| \leq \rho+\varepsilon\}, \\
& A_{3}=\left\{\beta \mid \beta=\mathrm{i} t, \rho+\varepsilon<t \leq t_{0}-1\right\}, \\
& A_{4}=\left\{\beta \mid \beta \in I_{1}\right\}, \\
& A_{5}=\left\{\beta \mid \beta=\mathrm{i} t, t>t_{0}+1\right\}, \\
& A_{6}=\left\{\beta \mid \beta=-\mathrm{i} t, \rho+\varepsilon<t \leq t_{0}-1\right\}, \\
& A_{7}=\left\{\beta \mid-\beta \in I_{1}\right\}, \\
& A_{8}=\left\{\beta \mid \beta=-\mathrm{i} t, t>t_{0}+1\right\} .
\end{aligned}
$$

Since $\sum_{\beta \in A_{1}} \frac{1}{|\beta|^{n}}$ converges and $\left|s_{x}-\beta\right| \geq y$ for $\beta \in A_{1}$, we get

$$
\sum_{\beta \in A_{1}}\left(\frac{s_{x}}{\beta}\right)^{n} \frac{1}{s_{x}-\beta}=O\left(y^{n} \sum_{\beta \in A_{1}} \frac{1}{|\beta|^{n}} \frac{1}{\left|s_{x}-\beta\right|}\right)=O\left(y^{n-1}\right) .
$$

Furthermore, A_{2} is a finite set. Hence,

$$
\sum_{\beta \in A_{2}}\left(\frac{s_{x}}{\beta}\right)^{n} \frac{1}{s_{x}-\beta}=O\left(y^{n} \sum_{\beta \in A_{2}} \frac{1}{|\beta|^{n}} \frac{1}{\left|s_{x}-\beta\right|}\right)=O\left(y^{n-1}\right)
$$

since $\left|s_{x}-\beta\right| \geq y-\rho-\varepsilon>C_{3} y$ for some constant C_{3} and all $\beta \in A_{2}$.
Similarly, $\left|s_{x}-\beta\right| \geq y-t_{0}+1>\frac{1}{4}$ and $|\beta|>\rho+\varepsilon$ for $\beta \in A_{3}$. Hence,

$$
\begin{aligned}
\sum_{\beta \in A_{3}}\left(\frac{s_{x}}{\beta}\right)^{n} \frac{1}{s_{x}-\beta} & =O\left(y^{n} \sum_{\beta \in A_{3}} \frac{1}{|\beta|^{n}} \frac{1}{\left|s_{x}-\beta\right|}\right) \\
& =O\left(y^{n} \sum_{\beta \in A_{3}} 1\right)=O\left(y^{n}\left(t_{0}-1\right)^{n}\right)=O\left(y^{2 n}\right) .
\end{aligned}
$$

If $\beta \in A_{4}$, then $\left|s_{x}-\beta\right| \geq|\mathrm{i} y-\beta|>\frac{C_{2}}{y^{n}}$ and $|\beta|>y-$ $\frac{7}{4}>C_{4} y$ for some constant C_{4}. Therefore,

$$
\begin{aligned}
\sum_{\beta \in A_{4}}\left(\frac{s_{x}}{\beta}\right)^{n} \frac{1}{s_{x}-\beta} & =O\left(y^{n} \sum_{\beta \in A_{4}} \frac{1}{|\beta|^{n}} \frac{1}{\left|s_{x}-\beta\right|}\right)=O\left(y^{n} \sum_{\beta \in A_{4}} 1\right) \\
& =O\left(y^{n} t_{0}^{n}\right)=O\left(y^{n}\left(y+\frac{3}{4}\right)^{n}\right)=O\left(y^{2 n}\right) .
\end{aligned}
$$

Similarly, $\left|s_{x}-\beta\right| \geq t-y>C_{5} t$ for some constant C_{5} and $\beta=\mathrm{i} t \in A_{5}$. One has

$$
\begin{aligned}
& \sum_{\beta \in A_{5}}\left(\frac{s_{x}}{\beta}\right)^{n} \frac{1}{s_{x}-\beta} \\
= & O\left(y^{n} \sum_{\beta \in A_{5}} \frac{1}{|\beta|^{n}} \frac{1}{\left|s_{x}-\beta\right|}\right)=O\left(y^{n} \int_{t_{0}+1}^{+\infty} \frac{1}{t^{n+1}} d N(t)\right) \\
= & O\left(y^{n} \int_{t_{0}+1}^{+\infty} t^{-2} d t\right)=O\left(y^{n}\left(t_{0}+1\right)^{-1}\right)=O\left(y^{n-1}\right)
\end{aligned}
$$

If $\beta \in A_{6}$, then $\left|s_{x}-\beta\right|>y+\rho+\varepsilon>y$ and $|\beta|>\rho+$ ε. Hence,

$$
\begin{aligned}
\sum_{\beta \in A_{6}}\left(\frac{s_{x}}{\beta}\right)^{n} \frac{1}{s_{x}-\beta} & =O\left(y^{n} \sum_{\beta \in A_{6}} \frac{1}{|\beta|^{n}} \frac{1}{\left|s_{x}-\beta\right|}\right) \\
& =O\left(y^{n-1} \sum_{\beta \in A_{6}} 1\right)=O\left(y^{2 n-1}\right)
\end{aligned}
$$

Similarly, $\left|s_{x}-\beta\right|>y+t_{0}-1>y$ and $|\beta|>t_{0}-1>$ $y-\frac{7}{4}>C_{4} y$ for $\beta \in A_{7}$. We have

$$
\begin{aligned}
\sum_{\beta \in A_{7}}\left(\frac{s_{x}}{\beta}\right)^{n} \frac{1}{s_{x}-\beta} & =O\left(y^{n} \sum_{\beta \in A_{7}} \frac{1}{|\beta|^{n}} \frac{1}{\left|s_{x}-\beta\right|}\right) \\
& =O\left(y^{-1} \sum_{\beta \in A_{7}} 1\right)=O\left(y^{n-1}\right)
\end{aligned}
$$

If $\beta \in A_{8}$, then $\left|s_{x}-\beta\right| \geq y+t>t$ for $\beta=-\mathrm{i} t \in A_{8}$. Therefore,

$$
\begin{aligned}
\sum_{\beta \in A_{8}}\left(\frac{s_{x}}{\beta}\right)^{n} \frac{1}{s_{x}-\beta} & =O\left(y^{n} \sum_{\beta \in A_{8}} \frac{1}{|\beta|^{n}} \frac{1}{\left|s_{x}-\beta\right|}\right) \\
& =O\left(y^{n} \int_{t_{0}+1}^{+\infty} \frac{1}{t^{n+1}} d N(t)\right)=O\left(y^{n-1}\right)
\end{aligned}
$$

Finally, $\frac{1}{s_{x}}\left(n_{1}-n_{2}\right)=O\left(y^{-1}\right)$ and $g_{1}^{\prime}\left(s_{x}\right)-g_{2}^{\prime}\left(s_{x}\right)=$ $O\left(y^{n-1}\right)$.

We obtain

$$
\frac{Z_{S, \chi}^{\prime}\left(s_{x}, \sigma\right)}{Z_{S, \chi}\left(s_{x}, \sigma\right)}=O\left(y^{2 n}\right)
$$

This completes the proof.

V. Prime geodesic theorem

Theorem 5. Let Y be a compact, n-dimensional (n even), locally symmetric Riemannian manifold with strictly negative sectional curvature. Then,

$$
\begin{aligned}
\pi_{\Gamma}(x)= & \sum_{p=0}^{n-1}(-1)^{p+1} \sum_{(\tau, \lambda) \in I_{p}} \sum_{s^{p, \tau, \lambda} \in\left(2 \rho \frac{n+\rho-1}{n+2 \rho-1}, 2 \rho\right]} \operatorname{li}\left(x^{s^{p, \tau, \lambda}}\right) \\
& +O\left(x^{2 \rho \frac{n+\rho-1}{n+2 \rho-1}}(\log x)^{-1}\right)
\end{aligned}
$$

as $x \rightarrow+\infty$, where $s^{p, \tau, \lambda}$ is a singularity of the Selberg zeta function $Z_{S}(s+\rho-\lambda, \tau)$.

Proof. We fix a $\chi \in \hat{\Gamma}$.
As already mentioned, there exists a σ-admissible γ_{σ} for every $\sigma \in \hat{M}$. Fix $\sigma \in \hat{M}$ and choose some σ-admissible γ_{σ}. We simplify our notation by omitting χ and σ in the sequel.

For $g \in \Gamma$, let $n_{\Gamma}(g)=\#\left(\Gamma_{g} /\langle g\rangle\right)$, where Γ_{g} is the centralizer of g in Γ and $\langle g\rangle$ is the group generated by g.

If $\gamma \in \Gamma_{\mathrm{h}}$ then $\gamma=\gamma_{0}^{n_{\Gamma}(\gamma)}$ for some $\gamma_{0} \in \mathrm{P} \Gamma_{\mathrm{h}}$.
For $\gamma \in \Gamma_{\mathrm{h}}$ we introduce $\Lambda_{0}(\gamma)=\Lambda_{0}\left(\gamma_{0}^{n_{\Gamma}(\gamma)}\right)=$ $\log N\left(\gamma_{0}\right)$.

Ву [6, pp. 96-97, (3.4)],

$$
\begin{equation*}
\frac{Z_{R}^{\prime}(s)}{Z_{R}(s)}=-\sum_{\gamma \in \Gamma_{\mathrm{h}}} \Lambda_{0}(\gamma) N(\gamma)^{-s}, \operatorname{Re}(s)>2 \rho \tag{8}
\end{equation*}
$$

We define

$$
\begin{equation*}
\psi_{j}(x)=\int_{0}^{x} \psi_{j-1}(t) d t, \quad j=1,2, \ldots \tag{9}
\end{equation*}
$$

where

$$
\psi_{0}(x)=\sum_{\gamma \in \Gamma_{\mathrm{h}}, N(\gamma) \leq x} \Lambda_{0}(\gamma)
$$

Let $k \geq 2 n$ be an integer and $x>1, c>2 \rho$.
By [18, p. 31, Th. B.] and (8)

$$
\begin{aligned}
& \frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} \frac{Z_{R}^{\prime}(s)}{Z_{R}(s)} \frac{x^{s}}{s(s+1) \ldots(s+k)} d s \\
&=- \sum_{\gamma \in \Gamma_{\mathrm{h}}} \Lambda_{0}(\gamma) \frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty}\left(\frac{x}{N(\gamma)}\right)^{s} \frac{d s}{s(s+1) \ldots(s+k)} \\
&=-\sum_{\gamma \in \Gamma_{\mathrm{h}}, \frac{x}{N(\gamma)} \geq 1} \Lambda_{0}(\gamma) \frac{1}{k!}\left(1-\frac{1}{\frac{x}{N(\gamma)}}\right)^{k} \\
&=-\frac{1}{k!} \sum_{\gamma \in \Gamma_{\mathrm{h}}, N(\gamma) \leq x} \Lambda_{0}(\gamma)\left(1-\frac{N(\gamma)}{x}\right)^{k} .
\end{aligned}
$$

On the other hand, by [18, p. 18, Th. A.]

$$
\psi_{k}(x)=\frac{1}{k!} \sum_{\gamma \in \Gamma_{\mathrm{h}}, N(\gamma) \leq x} \Lambda_{0}(\gamma)(x-N(\gamma))^{k}
$$

Hence,

$$
\psi_{k}(x)=\frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty}\left(-\frac{Z_{R}^{\prime}(s)}{Z_{R}(s)} \frac{x^{s+k}}{s(s+1) \ldots(s+k)}\right) d s
$$

Assume that $c^{\prime} \ll-2 \rho$ is not a pole of the integrand of $\psi_{k}(x)$.

By Lemma 3, $\frac{Z_{R}^{\prime}(s)}{Z_{R}(s)}=O\left(|s|^{n-1}\right)$ on the line $\operatorname{Re}(s)=$ c. Furthermore, by Lemma 4, there exists a sequence $\left\{y_{j}\right\}$, $y_{j} \rightarrow+\infty$ as $j \rightarrow+\infty$, such that

$$
\frac{Z_{R}^{\prime}\left(t+\mathrm{i} y_{j}\right)}{Z_{R}\left(t+\mathrm{i} y_{j}\right)}=O\left(y_{j}^{2 n}\right)
$$

for $t \in\left[c^{\prime}, c\right]$.
Fix some $y_{j} \gg 1$.
By construction of $\left\{y_{j}\right\}$, we know that no pole of $\frac{Z_{R}^{\prime}(s)}{Z_{R}(s)}$ occurs on the line $\operatorname{Im}(s)=y_{j}$.

Applying the Cauchy residue theorem to the integrand of $\psi_{k}(x)$ over the rectangle $R\left(c^{\prime}, y_{j}\right)$ given by vertices $c-\mathrm{i} y_{j}$, $c+\mathrm{i} y_{j}, c^{\prime}+\mathrm{i} y_{j}, c^{\prime}-\mathrm{i} y_{j}$, we obtain

$$
\begin{align*}
& \frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i}}^{c+\mathrm{i} y_{j}} y_{j}\left(-\frac{Z_{R}^{\prime}(s)}{Z_{R}(s)} \frac{x^{s+k}}{s(s+1) \ldots(s+k)}\right) d s \\
& =\sum_{z \in R\left(c^{\prime}, y_{j}\right)} \operatorname{Res}_{s=z}\left(-\frac{Z_{R}^{\prime}(s)}{Z_{R}(s)} \frac{x^{s+k}}{s(s+1) \ldots(s+k)}\right) \tag{10}\\
& +\frac{1}{2 \pi \mathrm{i}} \int_{c^{\prime}-\mathrm{i}}^{c^{\prime}+\mathrm{i}}+\frac{1}{2 \pi \mathrm{i}}{ }_{c^{\prime}-\mathrm{i} y_{j}}^{c^{\prime}-\mathrm{i}}+\frac{1}{2 \pi \mathrm{i}} \int_{c^{\prime}+\mathrm{i}}^{c^{\prime}+\mathrm{i} y_{j}}+\frac{1}{2 \pi \mathrm{i}} \int_{c^{\prime}+\mathrm{i} y_{j}}^{c+\mathrm{i} y_{j}}+\frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} y_{j}}^{c^{\prime}-\mathrm{i} y_{j}} .
\end{align*}
$$

We have

$$
\begin{gathered}
\frac{1}{2 \pi \mathrm{i}} \int_{c^{\prime}-\mathrm{i}}^{c^{\prime}+\mathrm{i}}\left(-\frac{Z_{R}^{\prime}(s)}{Z_{R}(s)} \frac{x^{s+k}}{s(s+1) \ldots(s+k)}\right) d s \\
=O\left(x^{c^{\prime}+k} \int_{c^{\prime}-\mathrm{i}}^{c^{\prime}+\mathrm{i}}|d s|\right)=O\left(x^{c^{\prime}+k} \int_{-1}^{1} d v\right)=O\left(x^{c^{\prime}+k}\right) \\
=O\left(x^{c^{\prime}+k} \int_{c^{\prime}}^{c^{\prime}+\mathrm{i} y_{j}} \frac{|d s|}{|s|^{k-n+2}}\right)=O\left(x^{c^{\prime}+k} \int_{1}^{y_{j}} \frac{d v}{v^{k-n+2}}\right)=O\left(x^{c^{\prime}+k}\right), \\
\frac{1}{2 \pi \mathrm{i}} \int_{c^{\prime}+\mathrm{i}}^{c^{\prime}+\mathrm{i} y_{j}}\left(-\frac{Z_{R}^{\prime}(s)}{Z_{R}(s)} \frac{x^{s+k}}{s(s+1) \ldots(s+k)}\right) d s \\
\frac{1}{2 \pi \mathrm{i}} \int_{c^{\prime}+\mathrm{i} y_{j}}^{c+\mathrm{i} y_{j}}\left(-\frac{Z_{R}^{\prime}(s)}{Z_{R}(s)} \frac{x^{s+k}}{s(s+1) \ldots(s+k)}\right) d s=O\left(\frac{x^{c+k}}{y_{j}^{k+1-2 n}}\right) .
\end{gathered}
$$

Similarly,

$$
\begin{aligned}
& \frac{1}{2 \pi \mathrm{i}} \int_{c^{\prime}-\mathrm{i} y_{j}}^{c^{\prime}-\mathrm{i}}\left(-\frac{Z_{R}^{\prime}(s)}{Z_{R}(s)} \frac{x^{s+k}}{s(s+1) \ldots(s+k)}\right) d s=O\left(x^{c^{\prime}+k}\right) \\
& \frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} y_{j}}^{c^{\prime}-\mathrm{i} y_{j}}\left(-\frac{Z_{R}^{\prime}(s)}{Z_{R}(s)} \frac{x^{s+k}}{s(s+1) \ldots(s+k)}\right) d s=O\left(\frac{x^{c+k}}{y_{j}^{k+1-2 n}}\right)
\end{aligned}
$$

Hence, by (10) and (5)

$$
\begin{align*}
& \frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} y_{j}}^{c+\mathrm{i} y_{j}}\left(-\frac{Z_{R}^{\prime}(s)}{Z_{R}(s)} \frac{x^{s+k}}{s(s+1) \ldots(s+k)}\right) d s \\
= & \sum_{p=0}^{n-1}(-1)^{p+1} \sum_{(\tau, \lambda) \in I_{p}} \sum_{z \in R\left(c^{\prime}, y_{j}\right)} c_{z}(p, \tau, \lambda, k) \tag{11}\\
& +O\left(x^{c^{\prime}+k}\right)+O\left(\frac{x^{c+k}}{y_{j}^{k+1-2 n}}\right)
\end{align*}
$$

where

$$
c_{z}(p, \tau, \lambda, k)=\operatorname{Res}_{s=z}\left(\frac{Z_{S}^{\prime}(s+\rho-\lambda, \tau)}{Z_{S}(s+\rho-\lambda, \tau)} \frac{x^{s+k}}{s(s+1) \ldots(s+k)}\right) .
$$

Letting $j \rightarrow+\infty, c^{\prime} \rightarrow-\infty$ in (11), we get

$$
\begin{aligned}
& \frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty}\left(-\frac{Z_{R}^{\prime}(s)}{Z_{R}(s)} \frac{x^{s+k}}{s(s+1) \ldots(s+k)}\right) d s \\
= & \sum_{p=0}^{n-1}(-1)^{p+1} \sum_{(\tau, \lambda) \in I_{p}} \sum_{z \in A_{k}^{p, \tau, \lambda}} c_{z}(p, \tau, \lambda, k),
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\psi_{k}(x)=\sum_{p=0}^{n-1}(-1)^{p+1} \sum_{(\tau, \lambda) \in I_{p}} \sum_{z \in A_{k}^{p, \tau, \lambda}} c_{z}(p, \tau, \lambda, k) \tag{12}
\end{equation*}
$$

where $A_{k}^{p, \tau, \lambda}$ denotes the set of poles of $\frac{Z_{S}^{\prime}(s+\rho-\lambda, \tau)}{Z_{S}(s+\rho-\lambda, \tau)} \frac{x^{s+k}}{s(s+1) \ldots(s+k)}$.

Take $k=2 n$. By (12),

$$
\begin{align*}
\psi_{2 n}(x) & =\sum_{p=0}^{n-1}(-1)^{p+1} \sum_{(\tau, \lambda) \in I_{p}} \sum_{z \in A_{2 n}^{p, \tau, \lambda}} c_{z}(p, \tau, \lambda, 2 n) \tag{13}\\
& =\sum_{p=0}^{n-1}(-1)^{p+1} \sum_{(\tau, \lambda) \in I_{p}} \sum_{z \in A^{p}, \tau, \lambda} c_{z}(p, \tau, \lambda)
\end{align*}
$$

where, for the sake of simplicity, we denote by $A^{p, \tau, \lambda}$ the set of poles of $\frac{Z_{S}^{\prime}(s+\rho-\lambda, \tau)}{Z_{S}(s+\rho-\lambda, \tau)} \frac{x^{s+2 n}}{s(s+1) \ldots(s+2 n)}$ and by $c_{z}(p, \tau, \lambda)$ the residue at $s=z$.
$\frac{Z_{S}^{\prime}(s+\rho-\lambda, \tau)}{Z_{S}(s+\rho-\lambda, \tau)} \frac{x^{s+2 n}}{s(s+1) \ldots(s+2 n)}$ corresponds to some $(\tau, \lambda) \in I_{p}$ for some $p \in\{0,1, \ldots, n-1\}$.

By [6, p. 113, Theorem 3.15],
the singularities of $Z_{S}(s+\rho-\lambda, \tau)$ are: at \pm i $s-\rho+\lambda$ of order $m\left(s, \gamma_{\tau}, \tau\right)$ if $s \neq 0$ is an eigenvalue of $A_{Y}\left(\gamma_{\tau}, \tau\right)$, at $-\rho+\lambda$ of order $2 m\left(0, \gamma_{\tau}, \tau\right)$ if 0 is an eigenvalue of $A_{Y}\left(\gamma_{\tau}, \tau\right)$, at $-s-\rho+\lambda, s \in T\left(\mathbb{N}-\epsilon_{\tau}\right)$ of order $-2(-1)^{\frac{n}{2}} \frac{\operatorname{vol}(Y)}{\operatorname{vol}\left(X_{d}\right)} m_{d}\left(s, \gamma_{\tau}, \tau\right)$ (in this case $s>0$ is an eigenvalue of $A_{d}\left(\gamma_{\tau}, \tau\right)$). Here, γ_{τ} is some τ-admissible element in $R(K)$.

Note that the singularities of $Z_{S}(s+\rho-\lambda, \tau)$ at $-s-\rho$ $+\lambda, s \in T\left(\mathbb{N}-\epsilon_{\tau}\right)$ are all less than $-\rho+\lambda$. Furthermore, the singularities of $Z_{S}(s+\rho-\lambda, \tau)$ that correspond to $A_{Y}\left(\gamma_{\tau}, \tau\right)$ are contained in the union of the interval
$[-2 \rho+\lambda, \lambda]$ with the line $-\rho+\lambda+\mathrm{i} \mathbb{R}$. An overlap between these two kinds of singularities may occur inside $[-2 \rho+\lambda,-\rho+\lambda)$ (see, [6, pp. 114-115]).

The integers $0,-1, \ldots,-2 n$ are simple poles of $\frac{x^{s+2 n}}{s(s+1) \ldots(s+2 n)}$. These integers may also appear as simple poles of $\frac{Z_{S}^{\prime}(s+\rho-\lambda, \tau)}{Z_{S}(s+\rho-\lambda, \tau)}$, i.e., as singularities of $Z_{S}(s+\rho-\lambda, \tau)$. Denote by $I_{p, \tau, \lambda}$ the set of such integers. Put $I_{p, \tau, \lambda}^{\prime}$ to be the difference $\{0,-1, \ldots,-2 n\} \backslash I_{p, \tau, \lambda}$. The set of the remaining singularities $s^{p, \tau, \lambda}$ of $Z_{S}(s+\rho-\lambda, \tau)$ will be denoted by $S^{p, \tau, \lambda}$.

Reasoning as in [16, pp. 88-89], we write

$$
\frac{Z_{S}^{\prime}(s+\rho-\lambda, \tau)}{Z_{S}(s+\rho-\lambda, \tau)}=\frac{o_{z}^{p, \tau, \lambda}}{s-z}\left(1+\sum_{i=1}^{+\infty} a_{i, z}^{p, \tau, \lambda}(s-z)^{i}\right)
$$

where z is a singularity of $Z_{S}(s+\rho-\lambda, \tau)$ and $o_{z}^{p, \tau, \lambda}$ is the order of z.

Now, for $s^{p, \tau, \lambda} \in S^{p, \tau, \lambda}$,

$$
\begin{align*}
& c_{s^{p, \tau, \lambda}}(p, \tau, \lambda) \\
= & \lim _{s \rightarrow s^{p, \tau, \lambda}}\left(s-s^{p, \tau, \lambda}\right) \frac{Z_{S^{\prime}}^{\prime}(s+\rho-\lambda, \tau)}{Z_{S}(s+\rho-\lambda, \tau)} \frac{x^{s+2 n}}{s(s+1) \ldots(s+2 n)} \\
= & \lim _{s \rightarrow s^{p, \tau, \lambda}}\left(s-s^{p, \tau, \lambda}\right) \frac{o_{s^{p, \tau, \lambda}}^{p, \tau, \lambda}}{s-s^{p, \tau, \lambda}} \tag{14}\\
& \left(1+\sum_{i=1}^{+\infty} a_{i, s^{p, \tau, \lambda}}^{p, \tau, \lambda}\left(s-s^{p, \tau, \lambda}\right)^{i}\right) \frac{x^{s+2 n}}{s(s+1) \ldots(s+2 n)} \\
= & o_{s^{p, \tau, \lambda}}^{p, \tau, \lambda} \frac{x^{s^{p, \tau, \lambda}+2 n}}{s^{p, \tau, \lambda}\left(s^{p, \tau, \lambda}+1\right) \ldots\left(s^{p, \tau, \lambda}+2 n\right)} .
\end{align*}
$$

Let $-j \in I_{p, \tau, \lambda}$. We have

$$
c_{-j}(p, \tau, \lambda)=\lim _{s \rightarrow-j} \frac{d}{d s}\left((s+j)^{2} \frac{Z_{S}^{\prime}(s+\rho-\lambda, \tau)}{Z_{S}(s+\rho-\lambda, \tau)} \frac{x^{s+2 n}}{s(s+1) \ldots(s+2 n)}\right) .
$$

Since

$$
\begin{aligned}
&(s+j)^{2} \frac{Z_{S}^{\prime}(s+\rho-\lambda, \tau)}{Z_{S}(s+\rho-\lambda, \tau)} \frac{x^{s+2 n}}{s(s+1) \ldots(s+2 n)} \\
&= o_{-j}^{p, \tau, \lambda}\left(1+\sum_{i=1}^{+\infty} a_{i,-j}^{p, \tau, \lambda}(s+j)^{i}\right) \frac{x^{s+2 n}}{\prod_{\substack{l=0 \\
l \neq j}}^{2 n}(s+l)} \\
&= o_{-j}^{p, \tau, \lambda} \frac{x^{s+2 n}}{\prod_{\substack{l=0 \\
l \neq j}}^{2 n}(s+l)}+o_{-j}^{p, \tau, \lambda} a_{1,-j}^{p, \tau, \lambda}(s+j) \frac{x^{s+2 n}}{2 n}(s+l) \\
& \prod_{\substack{l=0 \\
l \neq j}}(s+l
\end{aligned}
$$

and

$$
\frac{d}{d s}\left((s+j)^{2} \frac{Z_{S}^{\prime}(s+\rho-\lambda, \tau)}{Z_{S}(s+\rho-\lambda, \tau)} \frac{x^{s+2 n}}{s(s+1) \ldots(s+2 n)}\right)=
$$

$$
\begin{aligned}
& \frac{o_{-j}^{p, \tau, \lambda}}{\prod_{\substack{l=0 \\
l \neq j}}^{2 n}(s+l)} x^{s+2 n} \log x-\frac{o_{-j}^{p, \tau, \lambda}}{\prod_{\substack{l=0 \\
l \neq j}}^{2 n}(s+l)} \sum_{\substack{l=0 \\
l \neq j}}^{2 n} \frac{1}{s+l} x^{s+2 n}
\end{aligned}
$$

we obtain

$$
\left.\begin{array}{rl}
c_{-j}(p, \tau, \lambda)= & \frac{o_{-j}^{p, \tau, \lambda}}{\prod_{\substack{l=0 \\
l \neq j}}(-j+l)} x^{-j+2 n} \log x \\
& +\frac{o_{-,}^{p_{-j}^{p, \lambda}}}{\substack{l=0 \\
l \neq j}}(-j+l) \tag{15}\\
l \neq j
\end{array}-\sum_{\substack{l=0 \\
l \neq j}}^{2 n} \frac{1}{-j+l}+a_{1,-j}^{p, \tau, \lambda}\right) x^{-j+2 n} .
$$

Finally, let $-j \in I_{p, \tau, \lambda}^{\prime}$. Now,

$$
\begin{align*}
& c_{-j}(p, \tau, \lambda) \\
= & \lim _{s \rightarrow-j}\left((s+j) \frac{Z_{S}^{\prime}(s+\rho-\lambda, \tau)}{Z_{S}(s+\rho-\lambda, \tau)} \frac{x^{s+2 n}}{s(s+1) \ldots(s+2 n)}\right) \\
= & \frac{Z_{S}^{\prime}(-j+\rho-\lambda, \tau)}{Z_{S}(-j+\rho-\lambda, \tau)} \frac{x^{-j+2 n}}{\prod_{\substack{l=0 \\
l \neq j}}^{2 n}(-j+l)} . \tag{16}
\end{align*}
$$

We denote:

$$
\begin{aligned}
I_{-2 n} & =\{0,-1, \ldots,-2 n\} \\
B_{p, \tau, \lambda} & =\left\{-j \in I_{-2 n} \left\lvert\, c_{-j}(p, \tau, \lambda)=O\left(x^{2 \rho \frac{n+\rho-1}{n+2 \rho-1}}\right)\right.\right\} \\
B_{p, \tau, \lambda}^{\prime} & =I_{-2 n} \backslash B_{p, \tau, \lambda}, \\
S_{\mathbb{R}}^{p, \tau, \lambda} & =S^{p, \tau, \lambda} \cap \mathbb{R}, \\
S_{-\rho+\lambda, \lambda}^{p, \tau, \lambda} & =S^{p, \tau, \lambda} \backslash S_{\mathbb{R}}^{p, \tau, \lambda}, \\
C_{p, \tau, \lambda}^{1} & =\left\{s^{p, \tau, \lambda} \in S_{\mathbb{R}}^{p, \tau, \lambda} \mid s^{p, \tau, \lambda} \leq-2 n-1\right\}, \\
C_{p, \tau, \lambda}^{2} & =\left\{s^{p, \tau, \lambda} \in S_{\mathbb{R}}^{p, \tau, \lambda} \left\lvert\,-2 n-1<s^{p, \tau, \lambda} \leq-2 n+2 \rho \frac{n+\rho-1}{n+2 \rho-1}\right.\right\} \\
C_{p, \tau, \lambda}^{3} & =\left\{s^{p, \tau, \lambda} \in S_{\mathbb{R}}^{p, \tau, \lambda} \left\lvert\,-2 n+2 \rho \frac{n+\rho-1}{n+2 \rho-1}<s^{p, \tau, \lambda} \leq 2 \rho \frac{n+\rho-1}{n+2 \rho-1}\right.\right\} \\
C_{p, \tau, \lambda}^{4} & =\left\{s^{p, \tau, \lambda} \in S_{\mathbb{R}}^{p, \tau, \lambda} \left\lvert\, 2 \rho \frac{n+\rho-1}{n+2 \rho-1}<s^{p, \tau, \lambda} \leq 2 \rho\right.\right\} .
\end{aligned}
$$

Now, we can write

$$
\begin{align*}
& \sum_{z \in A^{p, \tau, \lambda}} c_{z}(p, \tau, \lambda) \\
= & \sum_{z \in B_{p, \tau, \lambda}} c_{z}(p, \tau, \lambda)+\sum_{z \in B_{p, \tau, \lambda}^{\prime}} c_{z}(p, \tau, \lambda) \tag{17}\\
& +\sum_{k=1}^{4} \sum_{z \in C_{p, \tau, \lambda}^{k}} c_{z}(p, \tau, \lambda)+\sum_{z \in S_{-\rho+\lambda}^{p, \tau, \lambda}} c_{z}(p, \tau, \lambda) .
\end{align*}
$$

Consider the sum over $C_{p, \tau, \lambda}^{1}$ in (17).

Since $C_{p, \tau, \lambda}^{1} \subset S_{\mathbb{R}}^{p, \tau, \lambda} \subset S^{p, \tau, \lambda}$ and $z \leq 2 n-1<-2 \rho+$ λ for $z \in C_{p, \tau, \lambda}^{1}$, it follows from (14) that

$$
\begin{aligned}
& \sum_{z \in C_{p, \tau, \lambda}^{1}} c_{z}(p, \tau, \lambda) \\
= & \sum_{z \in C_{p, \tau, \lambda}^{1}} o_{z}^{p, \tau, \lambda} \frac{x^{z+2 n}}{z(z+1) \ldots(z+2 n)} \\
= & -2(-1)^{\frac{n}{2}} \frac{\operatorname{vol}(Y)}{\operatorname{vol}\left(X_{d}\right)} \sum_{k \geq \frac{1}{T}(2 n+1-\rho+\lambda)+\epsilon_{\tau}} m_{d}\left(T\left(k-\epsilon_{\tau}\right), \gamma_{\tau}, \tau\right) \\
& \cdot \frac{x^{-T\left(k-\epsilon_{\tau}\right)-\rho+\lambda+2 n}}{\prod_{l=0}^{2 n}\left(-T\left(k-\epsilon_{\tau}\right)-\rho+\lambda+l\right)} .
\end{aligned}
$$

The fact that γ_{τ} is τ-admissible element yields $m_{d}\left(s, \gamma_{\tau}, \tau\right)$ $=P_{\tau}(s)$ for all $0 \leq s \in L(\tau)=T\left(\epsilon_{\tau}+\mathbb{Z}\right)$. In particular, $m_{d}\left(T\left(k-\epsilon_{\tau}\right), \gamma_{\tau}, \tau\right)=P_{\tau}\left(T\left(k-\epsilon_{\tau}\right)\right)$ for $k \geq$ $\frac{1}{T}(2 n+1-\rho+\lambda)+\epsilon_{\tau}$. We obtain

$$
\begin{aligned}
& \sum_{z \in C_{p, \tau, \lambda}^{1}} c_{z}(p, \tau, \lambda) \\
= & O\left(x^{-1} \sum_{k \geq \frac{1}{T}(2 n+1-\rho+\lambda)+\epsilon_{\tau}} \frac{\left|P_{\tau}\left(T\left(k-\epsilon_{\tau}\right)\right)\right|}{\left(T\left(k-\epsilon_{\tau}\right)+\rho-\lambda-2 n\right)^{2 n+1}}\right) \\
= & O\left(x^{-1} \sum_{k \geq \frac{1}{T}(2 n+1-\rho+\lambda)+\epsilon_{\tau}} \frac{\left(2 n+1-\rho+\lambda+T \epsilon_{\tau}\right)^{2 n+1}\left|P_{\tau}\left(T\left(k-\epsilon_{\tau}\right)\right)\right|}{T^{2 n+1} k^{2 n+1}}\right) .
\end{aligned}
$$

Hence, by Lemma 2,

$$
\begin{align*}
& \sum_{z \in C_{p, \tau, \lambda}^{1}} c_{z}(p, \tau, \lambda) \\
= & O\left(x^{-1} \sum_{k \geq \frac{1}{T}(2 n+1-\rho+\lambda)+\epsilon_{\tau}} \frac{1}{k^{n+2}}\right)=O\left(x^{-1}\right) . \tag{18}
\end{align*}
$$

The sum over $B_{p, \tau, \lambda}$ in (17) is a finite one. Therefore, by the definition of $B_{p, \tau, \lambda}$,

$$
\begin{equation*}
\sum_{z \in B_{p, \tau, \lambda}} c_{z}(p, \tau, \lambda)=O\left(x^{2 \rho \frac{n+\rho-1}{n+2 \rho-1}}\right) \tag{19}
\end{equation*}
$$

The sum over $C_{p, \tau, \lambda}^{2}$ is a finite one as well. Hence, by (14),

$$
\begin{align*}
& \sum_{z \in C_{p, \tau, \lambda}^{2}} c_{z}(p, \tau, \lambda) \tag{20}\\
= & \sum_{z \in C_{p, \tau, \lambda}^{2}} o_{z}^{p, \tau, \lambda} \frac{x^{z+2 n}}{z(z+1) \ldots(z+2 n)}=O\left(x^{2 \rho \frac{n+\rho-1}{n+2 \rho-1}}\right) .
\end{align*}
$$

Combining (13) and (17)-(20), we obtain

$$
\begin{aligned}
& \psi_{2 n}(x) \\
= & \sum_{p=0}^{n-1}(-1)^{p+1} \sum_{(\tau, \lambda) \in I_{p}} \sum_{z \in B_{p, \tau, \lambda}^{\prime}} c_{z}(p, \tau, \lambda) \\
& +\sum_{p=0}^{n-1}(-1)^{p+1} \sum_{(\tau, \lambda) \in I_{p}} \sum_{z \in C_{p, \tau, \lambda}^{3}} c_{z}(p, \tau, \lambda)+
\end{aligned}
$$

$$
\begin{equation*}
h^{-2 n} \Delta_{2 n}^{+} c_{0}(p, \tau, \lambda)=\frac{Z_{S}^{\prime}(\rho-\lambda, \tau)}{Z_{S}(\rho-\lambda, \tau)} \tag{28}
\end{equation*}
$$

by (16). Let $z \in B_{p, \tau, \lambda}^{\prime}, z=-j \leq-1$.
Suppose that $-j \in I_{p, \tau, \lambda}$.
Since $\left(x^{k} \log x\right)^{(n)}=k!(-1)^{n-k-1} \frac{(n-k-1)!}{x^{n-k}}$ and $\left(x^{k}\right)^{(n)}$ $=0$ for $0 \leq k<n, k \in \mathbb{N}$, we get

$$
\begin{equation*}
h^{-2 n} \Delta_{2 n}^{+} c_{-j}(p, \tau, \lambda)=o_{-j}^{p, \tau, \lambda} \frac{\tilde{x}_{p, \tau, \lambda,-j}^{-j}}{-j} \tag{29}
\end{equation*}
$$

where $\tilde{x}_{p, \tau, \lambda,-j} \in[x, x+2 n h]$.
If $-j \in I_{p, \tau, \lambda}^{\prime}$, then

$$
\begin{equation*}
h^{-2 n} \Delta_{2 n}^{+} c_{-j}(p, \tau, \lambda)=0 \tag{30}
\end{equation*}
$$

Now, (27)-(30) and the fact that $h \leq \frac{x}{2}$, imply

$$
\begin{equation*}
\sum_{z \in B_{p, \tau, \lambda}^{\prime}} h^{-2 n} \Delta_{2 n}^{+} c_{z}(p, \tau, \lambda)=O(\log x) \tag{31}
\end{equation*}
$$

Consider the sum over $C_{p, \tau, \lambda}^{3}$ on the right hand side of (26). Let $z \in C_{p, \tau, \lambda}^{3}$.

By (14) and (24),

$$
\begin{aligned}
\left|h^{-2 n} \Delta_{2 n}^{+} c_{z}(p, \tau, \lambda)\right| & =\left|o_{z}^{p, \tau, \lambda} \frac{\tilde{x}_{p, \tau, \lambda, z}^{z}}{z}\right| \\
& =\frac{\left|o_{z}^{p, \tau, \lambda}\right|}{|z|} \tilde{x}_{p, \tau, \lambda, z}^{z} \leq \frac{\left|o_{z}^{p, \tau, \lambda}\right|}{|z|} \tilde{x}_{p, \tau, \lambda, z}^{2 \rho \frac{n+\rho-1}{n+2 \rho-1}}
\end{aligned}
$$

where $\tilde{x}_{p, \tau, \lambda, z} \in[x, x+2 n h]$. Hence, $h \leq \frac{x}{2}$ and the fact that $C_{p, \tau, \lambda}^{3}$ is a finite set, yield

$$
\begin{equation*}
\sum_{z \in C_{p, \tau, \lambda}^{3}} h^{-2 n} \Delta_{2 n}^{+} c_{z}(p, \tau, \lambda)=O\left(x^{2 \rho \frac{n+\rho-1}{n+2 \rho-1}}\right) \tag{32}
\end{equation*}
$$

Similarly, the sum over $C_{p, \tau, \lambda}^{4}$ on the right hand side of (26) is a finite one. We have

$$
h^{-2 n} \Delta_{2 n}^{+} c_{s^{p, \tau, \lambda}}(p, \tau, \lambda)=o_{s^{p, \tau, \lambda}}^{p, \tau, \lambda} \frac{\tilde{x}_{s^{p, \tau, \lambda}}^{s^{p, \tau, \lambda}}}{s^{p, \tau, \lambda}}
$$

for $s^{p, \tau, \lambda} \in C_{p, \tau, \lambda}^{4}$, where $\tilde{x}_{s^{p, \tau, \lambda}} \in[x, x+2 n h]$. Hence, reasoning as in [20, p. 246] and [19, p. 101], we obtain

$$
\begin{align*}
& \sum_{z \in C_{p, \tau, \lambda}^{4}} h^{-2 n} \Delta_{2 n}^{+} c_{z}(p, \tau, \lambda) \\
= & \sum_{s^{p, \tau, \lambda} \in\left(2 \rho \frac{n+\rho-1}{n+2 \rho-1}, 2 \rho\right]} \frac{x^{s^{p, \tau, \lambda}}}{s^{p, \tau, \lambda}}+O\left(h^{2 \rho}\right), \tag{33}
\end{align*}
$$

where $s^{p, \tau, \lambda}$ is counted $o_{s^{p, \tau, \lambda}}^{p, \tau, \lambda}$ times in the last sum.
Finally, we estimate the sum over $S_{-\rho+\lambda}^{p, \tau, \lambda}$ in (26). Let $z \in$ $S_{-\rho+\lambda}^{p, \tau, \lambda}$. By (14),

$$
c_{z}(p, \tau, \lambda)=o_{z}^{p, \tau, \lambda} \frac{x^{z+2 n}}{z(z+1) \ldots(z+2 n)}
$$

We derive two estimates for $h^{-2 n} \Delta_{2 n}^{+} c_{z}(p, \tau, \lambda)$.
Firstly, by (22),

$$
\begin{aligned}
& h^{-2 n} \Delta_{2 n}^{+} c_{z}(p, \tau, \lambda) \\
= & h^{-2 n} \frac{o_{z}^{p, \tau, \lambda}}{z(z+1) \ldots(z+2 n)} \sum_{i=0}^{2 n}(-1)^{i}\binom{2 n}{i}(x+(2 n-i) h)^{z+2 n} .
\end{aligned}
$$

Since $h \leq \frac{x}{2}$, we obtain

$$
\begin{equation*}
h^{-2 n} \Delta_{2 n}^{+} c_{z}(p, \tau, \lambda)=O\left(h^{-2 n}|z|^{-2 n-1} x^{-\rho+\lambda+2 n}\right) \tag{34}
\end{equation*}
$$

Secondly, by (23),

$$
\begin{aligned}
& \left|h^{-2 n} \Delta_{2 n}^{+} c_{z}(p, \tau, \lambda)\right| \\
= & \left|h^{-2 n} \frac{o_{z}^{p, \tau, \lambda}}{z} \int_{x}^{x+h} \int_{t_{2 n}}^{t_{2 n}+h} \cdots \int_{t_{2}}^{t_{2}+h} t_{1}^{z} d t_{1} \ldots d t_{2 n}\right| \\
\leq & h^{-2 n}\left|o_{z}^{p, \tau, \lambda}\right||z|^{-1} \int_{x}^{x+h} \int_{t_{2 n}}^{t_{2 n}+h} \cdots \int_{t_{2}}^{t_{2}+h} t_{1}^{-\rho+\lambda} d t_{1} \ldots d t_{2 n}
\end{aligned}
$$

Hence, by the mean value theorem and the fact that $h \leq \frac{x}{2}$,

$$
\begin{equation*}
h^{-2 n} \Delta_{2 n}^{+} c_{z}(p, \tau, \lambda)=O\left(|z|^{-1} x^{-\rho+\lambda}\right) \tag{35}
\end{equation*}
$$

Let $M>2 \rho$. Now, using (34) and (35), we deduce

$$
\begin{align*}
& \sum_{\substack{z \in S_{-\rho+\lambda}^{p, \tau, \lambda}}} h^{-2 n} \Delta_{2 n}^{+} c_{z}(p, \tau, \lambda) \tag{36}\\
& =\sum_{\substack{z \in S^{p, \tau+\lambda} \\
|-\rho+\lambda|<|z| \leq M}} h^{-2 n} \Delta_{2 n}^{+} c_{z}(p, \tau, \lambda)+\sum_{\substack{\left.z \in\right|^{p},+,+\lambda+\lambda \\
|z|>M}} h^{-2 n} \Delta_{2 n}^{+} c_{z}(p, \tau, \lambda)
\end{align*}
$$

$$
\begin{aligned}
& =O\left(x^{-\rho+\lambda} \sum_{\substack{z \in S^{p, r, \lambda+\lambda} \\
|-\rho+\lambda|<|z| \leq M}}|z|^{-1}\right)+O\left(h^{-2 n} x^{-\rho+\lambda+2 n} \sum_{\substack{z \in S^{p, \tau+\lambda}+\lambda \\
|z|>M}}|z|^{-2 n-1}\right) \\
& =O\left(x^{-\rho+\lambda} \int_{1-\rho+\lambda \mid}^{M} t^{-1} d N_{p, \tau, \lambda}(t)\right)+O\left(h^{-2 n} x^{-\rho+\lambda+2 n} \int_{M}^{+\infty} t^{-2 n-1} d N_{p, \tau, \lambda}(t)\right) \\
& =O\left(x^{-\rho+\lambda} M^{n-1}\right)+O\left(h^{-2 n} x^{-\rho+\lambda+2 n} M^{-n-1}\right),
\end{aligned}
$$

where $N_{p, \tau, \lambda}(t)=O\left(t^{n}\right)$ denotes the number of singularities of $Z_{S}(s+\rho-\lambda, \tau)$ on the interval $-\rho+\lambda+\mathrm{i} x, 0<x \leq$ t.

Combining (26), (31)-(33) and (36), we obtain

$$
\begin{align*}
& h^{-2 n} \Delta_{2 n}^{+} \psi_{2 n}(x) \\
= & \sum_{p=0}^{n-1}(-1)^{p+1} \sum_{(\tau, \lambda) \in I_{p}} \sum_{s^{p, \tau, \lambda} \in\left(2 \rho \frac{n+\rho-1}{n+2 \rho-1}, 2 \rho\right]} \frac{x^{s^{p}, \tau, \lambda}}{s^{p, \tau, \lambda}} \\
& +O\left(h^{2 \rho}\right) \tag{37}\\
& +O\left(x^{\rho} M^{n-1}\right)+O\left(h^{-2 n} x^{\rho+2 n} M^{-n-1}\right) \\
& +O\left(x^{2 \rho \frac{n+\rho-1}{n+2 \rho-1}}\right) .
\end{align*}
$$

Substituting $h=x^{\frac{n+\rho-1}{n+2 \rho-1}}, M=x^{\frac{\rho}{n+2 \rho-1}}$ into (37) and taking into account (25), we get

$$
\begin{align*}
\psi_{0}(x) \leq & \sum_{p=0}^{n-1}(-1)^{p+1} \sum_{(\tau, \lambda) \in I_{p}} \sum_{s^{p, \tau, \lambda} \in\left(2 \rho \frac{n+\rho-1}{n+2 \rho-1}, 2 \rho\right]} \frac{x^{s^{p}, \tau, \lambda}}{s^{p, \tau, \lambda}} \tag{38}\\
& +O\left(x^{2 \rho \frac{n+\rho-1}{n+2 \rho-1}}\right) .
\end{align*}
$$

Analogously, (see, e.g., [19, pp. 101-102]), one proves

$$
\begin{align*}
\psi_{0}(x) \geq & \sum_{p=0}^{n-1}(-1)^{p+1} \sum_{(\tau, \lambda) \in I_{p}} \sum_{s^{p, \tau, \lambda} \in\left(2 \rho \frac{n+\rho-1}{n+2 \rho-1}, 2 \rho\right]} \frac{x^{s^{p, \tau, \lambda}}}{s^{p, \tau, \lambda}} \tag{39}\\
& +O\left(x^{2 \rho \frac{n+\rho-1}{n+2 \rho-1}}\right) .
\end{align*}
$$

Combining (38) and (39), we conclude that

$$
\begin{align*}
\psi_{0}(x)= & \sum_{p=0}^{n-1}(-1)^{p+1} \sum_{(\tau, \lambda) \in I_{p}} \sum_{s^{p, \tau, \lambda} \in\left(2 \rho \frac{n+\rho-1}{n+2 \rho-1}, 2 \rho\right]} \frac{s^{s^{p, \tau, \tau}}}{s^{p, \tau, \lambda}} \tag{40}\\
& +O\left(x^{2 \rho \frac{n+\rho-1}{n+2 \rho-1}}\right) .
\end{align*}
$$

Now, using (40) and following lines of [19, p. 102], we finally obtain

$$
\begin{aligned}
\pi_{\Gamma}(x)= & \sum_{p=0}^{n-1}(-1)^{p+1} \sum_{(\tau, \lambda) \in I_{p}} \sum_{s^{p, \tau, \lambda} \in\left(2 \rho \frac{n+\rho-1}{n+2 \rho-1}, 2 \rho\right]} \operatorname{li}\left(x^{s^{p, \tau, \lambda}}\right) \\
& +O\left(x^{2 \rho \frac{n+\rho-1}{n+2 \rho-1}}(\log x)^{-1}\right)
\end{aligned}
$$

as $x \rightarrow+\infty$. This completes the proof.

VI. Concluding remarks

Let us summarize the aspects in which Theorem 5 represents an improvement of (1).

As already mentioned in the Introduction, X is one of the following spaces:
$H \mathbb{R}^{k}(k$ even, $k \geq 2), H \mathbb{C}^{m}(m \geq 1), H \mathbb{H}^{l}(l \geq 1), H \mathbb{C} a^{2}$.

Hence, $n=k, 2 m, 4 l, 16$ and $\rho=\frac{1}{2}(k-1), m, 2 l+1,11$, respectively.

Since $H \mathbb{C}^{1} \cong H \mathbb{R}^{2}$ and $H \mathbb{H}^{1} \cong H \mathbb{R}^{4}$ (see, e.g., [15]), we may assume $m \geq 2$ and $l \geq 2$.

Now, $\alpha=n+q-1=k-1,2 m, 4 l+2,22$, respectively Obviously, $\alpha=2 \rho$.

The size of the error term in (1) is $O\left(x^{\left(1-\frac{1}{2 n}\right) 2 \rho}\right)$. We compare this bound to our bound $O\left(x^{2 \rho \frac{n+\rho-1}{n+2 \rho-1}}(\log x)^{-1}\right)$.

The factor $(\log x)^{-1}$ gives to our bound some advantage. However, let us have a look at the corresponding powers of x.

The inequality

$$
2 \rho \frac{n+\rho-1}{n+2 \rho-1} \leq\left(1-\frac{1}{2 n}\right) 2 \rho
$$

always holds true since the corresponding equivalent inequality $(n-1)(2 \rho-1) \geq 0$ is always valid. Here, the equality sign occurs only if $X=H \mathbb{R}^{2}$.

Furthermore, the inequalities

$$
2 \rho \frac{n+\rho-1}{n+2 \rho-1} \leq \frac{3}{2} \rho \leq\left(1-\frac{1}{2 n}\right) 2 \rho
$$

are always true.
Indeed, the left-hand inequality is valid, being equivalent to the inequality $n \leq 2 \rho+1$. The equality occurs only if $X=$ $H \mathbb{R}^{k}, k \geq 2, k$ even.

On the other side, the right-hand inequality holds also true since it reduces to $n-2 \geq 0$. Clearly, the right-hand inequality becomes equality only if $X=H \mathbb{R}^{2}$.

Summarizing results derived above, we end up with the conclusion that the obtained bound $O\left(x^{2 \rho \frac{n+\rho-1}{n+2 \rho-1}}(\log x)^{-1}\right)$ is of the form $O\left(x^{\theta}(\log x)^{-1}\right)$, where $\theta<\frac{3}{2} \rho$ if $X=H \mathbb{C}^{m}$, $(m \geq 2), H \mathbb{H}^{l},(l \geq 2), H \mathbb{C} a^{2}$ and $\theta=\frac{3}{2} \rho$ if $X=H \mathbb{R}^{k}, k$ even, $k \geq 2$.

Note that our result coincides with the best known results for the compact Riemann surfaces [20] and the real hyperbolic manifolds with cusps [1].

Also, note that taking $k>2 n$ in the proof of Theorem 5 does not yield a better result.

REFERENCES

[1] M. Avdispahić and Dž. Gušić, "On the error term in the prime geodesic theorem," Bull. Korean Math. Soc., vol. 49, pp. 367-372, 2012.
[2] M. Avdispahić and Dž. Gušić, "Order of Selberg's and Ruelle's zeta functions for compact even-dimensional locally symmetric spaces," J. Math. Anal. Appl., vol. 413, pp. 525-531, 2014.
[3] M. Avdispahić, Dž. Gušić and D. Kamber, "Order of zeta functions for compact even-dimensional symmetric spaces," Bull. Hellenic Math. Soc., vol. 59, pp. 57-69, 2016.
[4] M. Avdispahić and L. Smajlović, "On the prime number theorem for a compact Riemann surface," Rocky Mountain J. Math., vol. 39, pp. 1837-1845, 2009.
[5] U. Bröcker, "On Selberg's zeta functions, topological zeros and determinant formulas," SFB 288, Berlin, Tech. Rep. no. 114, 1994.
[6] U. Bunke and M. Olbrich, Selberg zeta and theta functions. A Differential Operator Approach. Berlin: Akademie Verlag, 1995.
[7] D. L. DeGeorge, "Length spectrum for compact locally symmetric spaces of strictly negative curvature," Ann. Sci. Ec. Norm. Sup., vol. 10, pp. 133-152, 1977.
[8] J. J. Duistermaat, J. A. C. Kolk, and V. S. Varadarajan, "Spectra of compact locally symmetric manifolds of negative curvature," Invent. Math., vol. 52, pp. 27-93, 1979.
[9] D. Fried, "The zeta functions of Ruelle and Selberg. I," Ann. Sci. Ec. Norm. Sup., vol. 19, pp. 491-517, 1986.
[10] D. Fried, "Analytic torsion and closed geodesics on hyperbolic manifolds," Invent. Math., vol. 84, pp. 523-540, 1986.
[11] D. Fried, "Torsion and closed geodesics on complex hyperbolic manifolds," Invent. Math., vol. 91, pp. 31-51, 1988.
[12] R. Gangolli, "The length spectrum of some compact manifolds of negative curvature," J. Diff. Geom., vol. 12, pp. 403-426, 1977.
[13] R. Gangolli, "Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one," Ill. J. Math., vol. 21, pp. 1-42, 1977.
[14] R. Gangolli and G. Warner, ''Zeta functions of Selberg's type for some non-compact quotients of symmetric spaces of rank one," Nagoya Math. J., vol. 78, pp. 1-44, 1980.
[15] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces. Boston et al.: Acad. Press, 1978.
[16] D. Hejhal, The Selberg trace formula for PSL $(2, \mathbb{R})$. Vol. I. Lecture Notes in Mathematics 548. Berlin-Heidelberg: Springer-Verlag, 1976.
[17] D. Hejhal, The Selberg trace formula for PSL $(2, \mathbb{R})$. Vol. II. Lecture Notes in Mathematics 1001. Berlin: Springer-Verlag, 1983.
[18] A. E. Ingham, The distribution of prime numbers. Cambridge: Cambridge Mathematical Library, Cambridge University Press, 1990.
[19] J. Park, "Ruelle zeta function and prime geodesic theorem for hyperbolic manifolds with cusps," in Casimir force, Casimir operators and Riemann hypothesis, Berlin, 2010, pp. 89-104.
[20] B. Randol, "On the asymptotic distribution of closed geodesics on compact Riemann surfaces," Trans. Amer. Math. Soc., vol. 233, pp. 241247, 1977.
[21] B. Randol, "The Riemann hypothesis for Selberg's zeta-function and the asymptotic behavior of eigenvalues of the Laplace operator," Trans. Amer. Math. Soc., vol. 236, pp. 209-223, 1978.
[22] M. Wakayama, "Zeta functions of Selberg's type associated with homogeneous vector bundles," Hiroshima Math. J., vol. 15, pp. 235-295, 1985.

[^0]: M. Avdispahić is with the Department of Mathematics, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo, Bosnia and Herzegovina (email: mavdispa@pmf.unsa.ba).
 Dž. Gušić is also with the Department of Mathematics, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo, Bosnia and Herzegovina, (phone: +38762934414; e-mail: dzenang@pmf.unsa.ba).

