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I. INTRODUCTION

LET Y = Γ\G/K = Γ\X be a compact, n−dimensional
(n even), locally symmetric Riemannian manifold with

strictly negative sectional curvature, where G is a connected
semi-simple Lie group of real rank one, K is a maximal
compact subgroup of G and Γ is a discrete, co-compact,
torsion-free subgroup of G.

We assume that the Riemannian metric over Y induced from
the Killing form is normalized so that the sectional curvature
of Y varies between −4 and −1.

As well known, a prime geodesic Cγ over Y corresponds
to a conjugacy class of a primitive hyperbolic element γ ∈ Γ.

Let πΓ (x) be the number of prime geodesics Cγ of length
l (γ) whose norm N (γ) = el(γ) is not larger than x (see
Section 3).

DeGeorge [7] derived the following form of the prime
geodesic theorem with an error term

πΓ (x) =

log x∫
1

eαu

u
du+O (xη) (1)

as x → +∞, where η is a constant such that
(
1− 1

2n

)
α ≤

η < α and α = n + q − 1, with q = 0, 1, 3, 7 depending
on whether X is a real, a complex or a quaternionic hyper-
bolic space or the hyperbolic Cayley plane, respectively (see,
sections I and V of [7]).

Integrating (1) by parts, one easily deduces a weaker form
of the prime geodesic theorem

πΓ (x) ∼ xα

α log x
, (2)
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as x→ +∞, where f (x) ∼ g (x) means limx→+∞
f(x)
g(x) = 1.

Note that (2) was also proved by Gangolli [12] and by
Gangolli-Warner [14] when Y has a finite volume.

By adapting Hejhal’s techniques [16], [17], Park [19] refined
the corresponding result of Gangolli-Warner [14] for real hy-
perbolic manifolds with cusps. Inspired by Randol’s approach
[20], we [1] further improved Park’s result [19] to the form

πΓ (x) =
∑

3
2d0<sj(k)≤2d0

(−1)
k

li
(
xsj(k)

)
+O

(
x

3
2d0 (log x)

−1
) (3)

as x→ +∞,
where d0 = 1

2 (n− 1), (sj (k)− k) (2d0 − k − sj (k)) is a
small eigenvalue in

[
0, 3

4d
2
0

]
of ∆k on πσk,λj(k) with sj (k)

= d0 + iλj (k) or sj (k) = d0 − iλj (k) in
(

3
2d0, 2d0

]
, ∆k

is the Laplacian acting on the space of k−forms over Y and
πσk,λj(k) is the principal series representation.

Note that the error term in (3) is in accordance with the
best known estimate in the case of compact Riemann surfaces
(see, e.g., [20], [4]).

The main purpose of this paper is to improve the error
term in the prime geodesic theorem (1) of DeGeorge [7]
for compact, even-dimensional locally symmetric Riemannian
manifolds of strictly negative sectional curvature so to corre-
spond to (3).

We shall use the zeta functions of Selberg and Ruelle
described by Bunke and Olbrich [6]. In particular, we utilize
the fact that for even n these functions are meromorphic
functions of order not larger than n (see, [2], [3]).

II. PRELIMINARIES

In the sequel, we follow the notation of [6].
Assume that G is a linear group.
Let g = k ⊕ p be the Cartan decomposition of the Lie

algebra g of G, a a maximal abelian subspace of p and M the
centralizer of a in K with the Lie algebra m.

Let Φ (g, a) be the root system and Φ+ (g, a) ⊂ Φ (g, a) a
system of positive roots. Let

n =
∑

α∈Φ+(g,a)

nα
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be the sum of the root spaces. Then, the Iwasawa decompo-
sition G = KAN corresponds to the Iwasawa decomposition
g = k⊕ a⊕ n. Define

ρ =
1

2

∑
α∈Φ+(g,a)

dim (nα)α.

Let a+ be the half line in a on which the positive roots take
positive values. Put A+ = exp (a+) ⊂ A.

Let σ ∈ M̂ .
By [6, p. 27], there is an element γ ∈ R (K) such that i∗ (γ)

= σ (see also [6, p. 23, Prop. 1.2]). Here, i∗ : R (K)→ R (M)
is the restriction map induced by the embedding i : M ↪→ K,
where R (K) and R (M) are the representation rings over Z
of K and M , respectively.

In [6, p. 28], the authors introduced the operators Ad (γ, σ)
and AY,χ (γ, σ). These operators correspond to spaces Xd

and Y , respectively. Here, χ is a finite-dimensional unitary
representation of Γ and Xd denotes a compact dual space of
the symmetric space X .

Let EA (.) be the family of spectral projections of a normal
operator A. Put

mχ (s, γ, σ) = TrEAY,χ(γ,σ) ({s}) ,

and

md (s, γ, σ) = TrEAd(γ,σ) ({s}) ,

for s ∈ C.

Definition 1. [6, p. 49, Def. 1.17] Let σ ∈ M̂ . Then, γ ∈
R (K) is called σ−admissible if i∗ (γ) = σ and md (s, γ, σ)
= Pσ (s) for all 0 ≤ s ∈ L (σ).

Here, Pσ (s) resp. L (σ) denote the polynomial resp. the
lattice given by [6, Definition 1.13, p. 47; see also p. 40]. In
particular, L (σ) = T (εσ + Z), where T and εσ ∈

{
0, 1

2

}
are

given by the same definition.
By [6, p. 49, Lemma 1.18], there exists a σ−admissible

γ ∈ R (K) for every σ ∈ M̂ .

III. ZETA FUNCTIONS

Since Γ ⊂ G is co-compact and torsion-free, there are only
two types of conjugacy classes: the class of the identity e ∈ Γ
and classes of hyperbolic elements.

Let Γh resp. PΓh denote the set of the Γ−conjugacy classes
of hyperbolic resp. primitive hyperbolic elements in Γ.

It is well known that every hyperbolic element g ∈ G is
conjugated to some element agmg ∈ A+M (see, e.g., [12]–
[14]). Following [6, p. 59], we put l (g) = |log (ag)|.

For s ∈ C, Re (s) > ρ, the Selberg zeta function is defined
by the infinite product (see, [6, p. 97])

ZS,χ (s, σ)

=
∏

γ0∈PΓh

+∞∏
k=0

det
(
1−

(
σ (mγ0)⊗ χ (γ0)⊗ Sk

(
Ad (mγ0aγ0)n̄

))
e−(s+ρ)l(γ0)

)
,

where σ and χ are finite-dimensional unitary representations
of M and Γ, respectively, Sk is the k−th symmetric power of
an endomorphism, n̄ = θn and θ is the Cartan involution of
g.

For s ∈ C, Re (s) > 2ρ, the Ruelle zeta function is defined
by the infinite product (see, [6, p. 96])

ZR,χ (s, σ) =
∏

γ0∈PΓh

det
(
1− (σ (mγ0

)⊗ χ (γ0)) e−sl(γ0)
)(−1)n−1

.

As known, the Ruelle zeta function can be expressed in terms
of Selberg zeta functions (see, e.g., [9]–[11]). By [6, pp. 99–
100], there exist sets Ip =

{
(τ, λ) | τ ∈ M̂, λ ∈ R

}
such that

ZR,χ (s, σ)

=
n−1∏
p=0

∏
(τ,λ)∈Ip

ZS,χ (s+ ρ− λ, τ ⊗ σ)
(−1)p

.
(4)

Let Λ resp. Υ denote the set of all elements λ resp τ that
appear in (4).

Note that [6, p. 113, Theorem 3.15] gives precise descrip-
tion of the locations and the orders of the singularities of
ZS,χ (s, σ).

We have proved the following theorem.

Theorem A. [2, p. 528, Th. 4.1] If γ is σ−admissible, then
there exist entire functions Z1 (s), Z2 (s) of order at most n
such that

ZS,χ (s, σ) =
Z1 (s)

Z2 (s)
,

where the zeros of Z1 (s) correspond to the zeros of ZS,χ (s, σ)
and the zeros of Z2 (s) correspond to the poles of ZS,χ (s, σ).
The orders of the zeros of Z1 (s) resp. Z2 (s) equal the orders
of the corresponding zeros resp. poles of ZS,χ (s, σ).

IV. AUXILIARY RESULTS

Lemma 2. If γ is σ−admissible, then

Pσ (w) =

n
2−1∑
k=0

pn−2k−1w
n−2k−1,

where

pn−2k−1 =
2T(

n
2 − k − 1

)
!
c−(n2−k)

, k = 0, 1, ...,
n

2
− 1,

c−n2 =

(
n
2 − 1

)
!

2T

and the numbers ck are defined by the asymptotic expression

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017 

ISSN: 2313-0571 27



Tr e−tAd(γ,σ)2 t→0∼
∞∑

k=−n2

ckt
k.

Proof. By [6, pp. 47–48], Pσ (0) = 0, Pσ (−w) = −Pσ (w)
and Pσ (w) = w ·Qσ (w), where Qσ is an even polynomial.
Hence, Pσ is an odd polynomial. Moreover, Pσ is a monic
polynomial of degree n − 1 (see, e.g., [5, pp. 17–19], [22,
pp. 240–243]).

Put

Pσ (w) =

n
2−1∑
k=0

pn−2k−1w
n−2k−1, pn−1 = 1.

By [6, p. 118], Qσ (w) =

n
2−1∑
k=0

qn−2k−2w
n−2k−2, where q2i

= 2T
i! c−(i+1), i = 0, 1,..., n2 − 1. In other words,

pn−2k−1 = qn−2k−2 =
2T(

n
2 − k − 1

)
!
c−(n2−k)

,

k = 0,1,...,n2 − 1. This completes the proof.

Lemma 3. Let H be a half-plane of the form Re (s) <
− (2ρ+ ε), ε > 0, minus the union of a set of congruent
disks about the points −s, s ∈ T (N− ετ⊗σ) + ρ − λ, λ ∈ Λ,
τ ∈ Υ. Then there exists a constant CR such that

∣∣∣∣∣Z
′

R,χ (s, σ)

ZR,χ (s, σ)

∣∣∣∣∣ ≤ CR |s|n−1

for s ∈ H .

Proof. The identity (4) implies

Z
′

R,χ (s, σ)

ZR,χ (s, σ)

=
n−1∑
p=0

(−1)
p
∑

(τ,λ)∈Ip

Z
′

S,χ (s+ ρ− λ, τ ⊗ σ)

ZS,χ (s+ ρ− λ, τ ⊗ σ)
.

(5)

Recall [6, p. 113, Theorem 3.15]. Now, it is enough to prove
that if K is a half-plane of the form Re (s) < − (ρ+ ε), ε > 0,
minus the union of a set of congruent disks about the points
−s, s ∈ T (N− ετ⊗σ), τ ∈ Υ, then there exists a constant
CS such that ∣∣∣∣∣Z

′

S,χ (s, τ ⊗ σ)

ZS,χ (s, τ ⊗ σ)

∣∣∣∣∣ ≤ CS |s|n−1

for s ∈ K and all τ ∈ Υ.
The proof is independent of the choice of τ . We simplify

our notation by omitting the latter.
By [6, p. 118, Th. 3.19], ZS,χ (s, σ) has the representation

ZS,χ (s, σ) = det
(
AY,χ (γ, σ)

2
+ s2

)
det (Ad (γ, σ) + s)

− 2 dim(χ)χ(Y )

χ(Xd) ·

exp

(
dim(χ)χ(Y )
χ(Xd)

n
2∑

m=1
c−m

s2m

m!

(
m−1∑
r=1

1
r − 2

2m−1∑
r=1

1
r

))
.

Hence, (see, [6, pp. 120–122])

ZS,χ (−s, σ)

= ZS,χ (s, σ) ·
(

det (Ad (γ, σ)− s)
det (Ad (γ, σ) + s)

)− 2 dim(χ)χ(Y )

χ(Xd)

= ZS,χ (s, σ) ·
(
D+(s)

D−(s)

)− 2 dim(χ)χ(Y )

χ(Xd)

= ZS,χ (s, σ) ·

exp

(
− π
T

s∫
0

Pσ (w)

{
tan

(
πw
T

)
, εσ = 1

2
− cot

(
πw
T

)
, εσ = 0

}
dw

)− 2 dim(χ)χ(Y )

χ(Xd)

= ZS,χ (s, σ) · e
K

s∫
0

Pσ(w)

 tan
(
πw
T

)
, εσ = 1

2
− cot

(
πw
T

)
, εσ = 0

dw
.

(6)

Consider the case εσ = 1
2 . The case εσ = 0 is discussed

similarly.
The identity (6) implies

−
Z
′

S,χ (−s, σ)

ZS,χ (−s, σ)
=
Z
′

S,χ (s, σ)

ZS,χ (s, σ)
+KPσ (s) tan

(πs
T

)
.

Since
Z
′
S,χ(s,σ)

ZS,χ(s,σ) is bounded on every half-plane Re (s) > ρ+ε,

ε > 0, we conclude that
Z
′
S,χ(−s,σ)

ZS,χ(−s,σ) is bounded on K. More-
over, tan

(
πs
T

)
is bounded on the complement of the union

of congruent disks about the points T
(
k + 1

2

)
= T (k + εσ),

k ∈ Z. This completes the proof.

Lemma 4. Let c, d ∈ R, c < d. If γ is σ−admissible then
there exists a sequence {yj}, yj → +∞ as j → +∞, such
that

Z
′

R,χ (x+ i yj , σ)

ZR,χ (x+ i yj , σ)
= O

(
y2n
j

)
for x ∈ (c, d).

Proof. Consider the identity (5).
It is enough to prove that there exists a sequence {yj},

yj → +∞ as j → +∞, such that

Z
′

S,χ (x+ i yj , τ ⊗ σ)

ZS,χ (x+ i yj , τ ⊗ σ)
= O

(
y2n
j

)
for x ∈ (a, b) and all τ ∈ Υ, where a = c − ρ, b = d + ρ.

We consider the interval I1 given by i t, t0−1 < t ≤ t0 +1,
where t0 > 2ρ is fixed.
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It suffices to prove that there exists y ∈ (t0 − 1, t0 + 1] such
that

Z
′

S,χ (x+ i y, τ ⊗ σ)

ZS,χ (x+ i y, τ ⊗ σ)
= O

(
y2n
)

(7)

for x ∈ (a, b) and all τ ∈ Υ.
Let SR be the set of all singularities of all zeta functions

ZS,χ (s, τ ⊗ σ), τ ∈ Υ. Let NR (t) be the number of elements
in SR on the interval ix, 0 < x ≤ t.

Let N (t) be the number of singularities of ZS,χ (s, σ)
on the same interval. By [6, Th. 3.15], these singularities
are given in terms of eigenvalues of AY,χ (γσ, σ) for some
σ−admissible γσ ∈ R (K). Hence, according to [8, p. 89, Th.
9.1.], N (t) = D1t

n + O
(
tn−1 (log t)

−1
)

for some explicitly
known constant D1. However, the O−term does not improve
our result. For the sake of simplicity, we take N (t) = O (tn).
Consequently, NR (t) = O (tn).

It follows immediately that the number of singularities of
ZS,χ (s, σ) on I1 is O (tn0 ).

Similarly, the number of elements in SR on I1 is O (tn0 ),
i.e., it is at most bC1t

n
0 c for some constant C1.

Denote by I2 the interval i t, t0 − 3
4 < t ≤ t0 + 3

4 .
Since I2 ⊂ I1, the number of elements in SR on I2 is at

most bC1t
n
0 c.

Let us divide the interval I2 into 1 + bC1t
n
0 c equal intervals.

By the Dirichlet principle, one of them does not contain any
element from SR. Let i y be the midpoint of such an interval.
We shall prove that y satisfies (7) for x ∈ (a, b) and all τ ∈
Υ. The proof does not depend on the choice of τ ∈ Υ. We
simplify our notation by omitting it, i.e., we prove that

Z
′

S,χ (x+ i y, σ)

ZS,χ (x+ i y, σ)
= O

(
y2n
)

for x ∈ (a, b).
By Theorem A, Z1 (s) and Z2 (s) are entire functions of or-

der at most n. Hence, there are canonical product expressions
for Z1 (s) and Z2 (s) of the form (see, e.g., [9, p. 509])

Zi (s) = sniegi(s)
∏

α∈Ri\{0}

(
1− s

α

)
exp

(
s
α + s2

2α2 + ...+ sn

nαn

)
,

i = 1, 2, where Ri is the set of zeros of Zi (s), ni is the order
of the zero of Zi (s) at s = 0, gi (s) is a polynomial of degree
at most n.

Therefore,

Z
′

S,χ (s, σ)

ZS,χ (s, σ)
=

1

s
(n1 − n2) + g

′

1 (s)− g
′

2 (s)

+
∑
i=1,2

(−1)
i−1

∑
α∈Ri\{0}

( s
α

)n 1

s− α
.

We have

|i y − α| ≥ 1

2
·

3
2

1 + bC1tn0 c
≥ 3

4
· 1

1 + C1tn0

>
3

4
· 1

1 + C1

(
y + 3

4

)n ≥ C2

yn

for some constant C2 and all α ∈ Ri, i = 1, 2.
Now, for a small fixed ε > 0 and the choice sx = x + i y,

x ∈ (a, b), we have

Z
′

S,χ (sx, σ)

ZS,χ (sx, σ)
=

1

sx
(n1 − n2) + g

′

1 (sx)− g
′

2 (sx)

+
8∑
k=1

∑
β∈Ak

(
sx
β

)n
1

sx − β
,

where β denotes a singularity of ZS,χ (s, σ) and

A1 = {β |β ∈ −T (N− εσ) , |β| > ρ+ ε} ,
A2 = {β | 0 < |β| ≤ ρ+ ε} ,
A3 = {β |β = i t, ρ+ ε < t ≤ t0 − 1} ,
A4 = {β |β ∈ I1} ,
A5 = {β |β = i t, t > t0 + 1} ,
A6 = {β |β = − i t, ρ+ ε < t ≤ t0 − 1} ,
A7 = {β | − β ∈ I1} ,
A8 = {β |β = − i t, t > t0 + 1} .

Since
∑
β∈A1

1
|β|n converges and |sx − β| ≥ y for β ∈ A1, we

get

∑
β∈A1

(
sx
β

)n
1

sx−β = O

(
yn

∑
β∈A1

1
|β|n

1
|sx−β|

)
= O

(
yn−1

)
.

Furthermore, A2 is a finite set. Hence,

∑
β∈A2

(
sx
β

)n
1

sx−β = O

(
yn

∑
β∈A2

1
|β|n

1
|sx−β|

)
= O

(
yn−1

)
since |sx − β| ≥ y − ρ − ε > C3y for some constant C3 and
all β ∈ A2.

Similarly, |sx − β| ≥ y − t0 + 1 > 1
4 and |β| > ρ + ε for

β ∈ A3. Hence,

∑
β∈A3

(
sx
β

)n
1

sx−β = O

(
yn

∑
β∈A3

1
|β|n

1
|sx−β|

)

= O

(
yn

∑
β∈A3

1

)
= O (yn (t0 − 1)

n
) = O

(
y2n
)
.

If β ∈ A4, then |sx − β| ≥ |i y − β| > C2

yn and |β| > y −
7
4 > C4y for some constant C4. Therefore,

∑
β∈A4

(
sx
β

)n
1

sx−β = O

(
yn

∑
β∈A4

1
|β|n

1
|sx−β|

)
= O

(
yn

∑
β∈A4

1

)
= O (yntn0 ) = O

(
yn
(
y + 3

4

)n)
= O

(
y2n
)
.

Similarly, |sx − β| ≥ t − y > C5t for some constant C5

and β = i t ∈ A5. One has
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∑
β∈A5

(
sx
β

)n
1

sx − β

= O

yn ∑
β∈A5

1

|β|n
1

|sx − β|

 = O

yn +∞∫
t0+1

1

tn+1
dN (t)


= O

yn +∞∫
t0+1

t−2dt

 = O
(
yn (t0 + 1)

−1
)

= O
(
yn−1

)
.

If β ∈ A6, then |sx − β| > y + ρ + ε > y and |β| > ρ +
ε. Hence,

∑
β∈A6

(
sx
β

)n
1

sx − β
= O

yn ∑
β∈A6

1

|β|n
1

|sx − β|


= O

yn−1
∑
β∈A6

1

 = O
(
y2n−1

)
.

Similarly, |sx − β| > y + t0 − 1 > y and |β| > t0 − 1 >
y − 7

4 > C4y for β ∈ A7. We have

∑
β∈A7

(
sx
β

)n
1

sx − β
= O

yn ∑
β∈A7

1

|β|n
1

|sx − β|


= O

y−1
∑
β∈A7

1

 = O
(
yn−1

)
.

If β ∈ A8, then |sx − β| ≥ y + t > t for β = − i t ∈ A8.
Therefore,

∑
β∈A8

(
sx
β

)n
1

sx−β = O

(
yn

∑
β∈A8

1
|β|n

1
|sx−β|

)

= O

(
yn

+∞∫
t0+1

1
tn+1 dN (t)

)
= O

(
yn−1

)
.

Finally, 1
sx

(n1 − n2) = O
(
y−1

)
and g

′

1 (sx) − g
′

2 (sx) =

O
(
yn−1

)
.

We obtain

Z
′

S,χ (sx, σ)

ZS,χ (sx, σ)
= O

(
y2n
)
.

This completes the proof.

V. PRIME GEODESIC THEOREM

Theorem 5. Let Y be a compact, n−dimensional (n even),
locally symmetric Riemannian manifold with strictly negative
sectional curvature. Then,

πΓ (x) =
n−1∑
p=0

(−1)
p+1 ∑

(τ,λ)∈Ip

∑
sp,τ,λ∈(2ρ n+ρ−1

n+2ρ−1 ,2ρ]
li
(
xs

p,τ,λ
)

+O
(
x2ρ n+ρ−1

n+2ρ−1 (log x)
−1
)

as x→ +∞, where sp,τ,λ is a singularity of the Selberg zeta
function ZS (s+ ρ− λ, τ).

Proof. We fix a χ ∈ Γ̂.
As already mentioned, there exists a σ−admissible γσ for

every σ ∈ M̂ . Fix σ ∈ M̂ and choose some σ−admissible γσ .
We simplify our notation by omitting χ and σ in the sequel.

For g ∈ Γ, let nΓ (g) = # (Γg/〈g〉), where Γg is the
centralizer of g in Γ and 〈g〉 is the group generated by g.

If γ ∈ Γh then γ = γ
nΓ(γ)
0 for some γ0 ∈ PΓh.

For γ ∈ Γh we introduce Λ0 (γ) = Λ0

(
γ
nΓ(γ)
0

)
=

logN (γ0).
By [6, pp. 96–97, (3.4)],

Z
′

R (s)

ZR (s)
= −

∑
γ∈Γh

Λ0 (γ)N (γ)
−s
, Re (s) > 2ρ. (8)

We define

ψj (x) =

x∫
0

ψj−1 (t) dt, j = 1, 2, ..., (9)

where

ψ0 (x) =
∑

γ∈Γh,N(γ)≤x

Λ0 (γ) .

Let k ≥ 2n be an integer and x > 1, c > 2ρ.
By [18, p. 31, Th. B.] and (8)

1

2π i

c+i∞∫
c−i∞

Z
′

R (s)

ZR (s)

xs

s (s+ 1) ... (s+ k)
ds

= −
∑
γ∈Γh

Λ0 (γ)
1

2π i

c+i∞∫
c−i∞

(
x

N (γ)

)s
ds

s (s+ 1) ... (s+ k)

= −
∑

γ∈Γh,
x

N(γ)
≥1

Λ0 (γ)
1

k!

(
1− 1

x
N(γ)

)k

= − 1

k!

∑
γ∈Γh,N(γ)≤x

Λ0 (γ)

(
1− N (γ)

x

)k
.

On the other hand, by [18, p. 18, Th. A.]

ψk (x) =
1

k!

∑
γ∈Γh,N(γ)≤x

Λ0 (γ) (x−N (γ))
k
.

Hence,

ψk (x) =
1

2π i

c+i∞∫
c−i∞

(
−Z

′

R (s)

ZR (s)

xs+k

s (s+ 1) ... (s+ k)

)
ds.
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Assume that c
′ � −2ρ is not a pole of the integrand of

ψk (x).

By Lemma 3, Z
′
R(s)

ZR(s) = O
(
|s|n−1

)
on the line Re (s) =

c
′
. Furthermore, by Lemma 4, there exists a sequence {yj},

yj → +∞ as j → +∞, such that

Z
′

R (t+ i yj)

ZR (t+ i yj)
= O

(
y2n
j

)
for t ∈

[
c
′
, c
]
.

Fix some yj � 1.

By construction of {yj}, we know that no pole of Z
′
R(s)

ZR(s)

occurs on the line Im (s) = yj .
Applying the Cauchy residue theorem to the integrand of

ψk (x) over the rectangle R
(
c
′
, yj

)
given by vertices c− i yj ,

c+ i yj , c
′
+ i yj , c

′ − i yj , we obtain

1
2π i

c+i yj∫
c−i yj

(
−Z

′
R(s)

ZR(s)
xs+k

s(s+1)...(s+k)

)
ds

=
∑

z∈R(c′ ,yj)
Ress=z

(
−Z

′
R(s)

ZR(s)
xs+k

s(s+1)...(s+k)

)

+ 1
2π i

c
′
+i∫

c′−i

+ 1
2π i

c
′
−i∫

c′−i yj

+ 1
2π i

c
′
+i yj∫
c′+i

+ 1
2π i

c+i yj∫
c′+i yj

+ 1
2π i

c
′
−i yj∫

c−i yj

.

(10)

We have

1
2π i

c
′
+i∫

c′−i

(
−Z

′
R(s)

ZR(s)
xs+k

s(s+1)...(s+k)

)
ds

= O

(
xc
′
+k

c
′
+i∫

c′−i

|ds|

)
= O

(
xc
′
+k

1∫
−1

dv

)
= O

(
xc
′
+k
)
,

1
2π i

c
′
+i yj∫
c′+i

(
−Z

′
R(s)

ZR(s)
xs+k

s(s+1)...(s+k)

)
ds

= O

xc′+k c′+i yj∫
c′+i

|ds|
|s|k−n+2

 = O

(
xc
′
+k

yj∫
1

dv
vk−n+2

)
= O

(
xc
′
+k
)
,

1
2π i

c+i yj∫
c′+i yj

(
−Z

′
R(s)

ZR(s)
xs+k

s(s+1)...(s+k)

)
ds = O

(
xc+k

yk+1−2n
j

)
.

Similarly,

1
2π i

c
′
−i∫

c′−i yj

(
−Z

′
R(s)

ZR(s)
xs+k

s(s+1)...(s+k)

)
ds = O

(
xc
′
+k
)
,

1
2π i

c
′
−i yj∫

c−i yj

(
−Z

′
R(s)

ZR(s)
xs+k

s(s+1)...(s+k)

)
ds = O

(
xc+k

yk+1−2n
j

)
.

Hence, by (10) and (5)

1

2π i

c+i yj∫
c−i yj

(
−Z

′

R (s)

ZR (s)

xs+k

s (s+ 1) ... (s+ k)

)
ds

=
n−1∑
p=0

(−1)
p+1

∑
(τ,λ)∈Ip

∑
z∈R(c′ ,yj)

cz (p, τ, λ, k)

+O
(
xc
′
+k
)

+O

(
xc+k

yk+1−2n
j

)
,

(11)

where

cz (p, τ, λ, k) = Ress=z

(
Z
′
S(s+ρ−λ,τ)

ZS(s+ρ−λ,τ)
xs+k

s(s+1)...(s+k)

)
.

Letting j → +∞, c
′ → −∞ in (11), we get

1

2π i

c+i∞∫
c−i∞

(
−Z

′

R (s)

ZR (s)

xs+k

s (s+ 1) ... (s+ k)

)
ds

=
n−1∑
p=0

(−1)
p+1

∑
(τ,λ)∈Ip

∑
z∈Ap,τ,λk

cz (p, τ, λ, k) ,

i.e.,

ψk (x) =
n−1∑
p=0

(−1)
p+1

∑
(τ,λ)∈Ip

∑
z∈Ap,τ,λk

cz (p, τ, λ, k) , (12)

where Ap,τ,λk denotes the set of poles of
Z
′
S(s+ρ−λ,τ)

ZS(s+ρ−λ,τ)
xs+k

s(s+1)...(s+k) .
Take k = 2n. By (12),

ψ2n (x) =
n−1∑
p=0

(−1)
p+1 ∑

(τ,λ)∈Ip

∑
z∈Ap,τ,λ2n

cz (p, τ, λ, 2n)

=
n−1∑
p=0

(−1)
p+1 ∑

(τ,λ)∈Ip

∑
z∈Ap,τ,λ

cz (p, τ, λ),

(13)

where, for the sake of simplicity, we denote by Ap,τ,λ the set

of poles of Z
′
S(s+ρ−λ,τ)

ZS(s+ρ−λ,τ)
xs+2n

s(s+1)...(s+2n) and by cz (p, τ, λ) the
residue at s = z.

Z
′
S(s+ρ−λ,τ)

ZS(s+ρ−λ,τ)
xs+2n

s(s+1)...(s+2n) corresponds to some (τ, λ) ∈ Ip
for some p ∈ {0, 1, ..., n− 1}.

By [6, p. 113, Theorem 3.15],
the singularities of ZS (s+ ρ− λ, τ) are: at ± i s − ρ + λ of
order m (s, γτ , τ) if s 6= 0 is an eigenvalue of AY (γτ , τ),
at − ρ + λ of order 2m (0, γτ , τ) if 0 is an eigenvalue
of AY (γτ , τ), at −s − ρ + λ, s ∈ T (N− ετ ) of order
−2 (−1)

n
2 vol(Y )

vol(Xd)md (s, γτ , τ) (in this case s > 0 is an
eigenvalue of Ad (γτ , τ)). Here, γτ is some τ−admissible
element in R (K).

Note that the singularities of ZS (s+ ρ− λ, τ) at −s − ρ
+ λ, s ∈ T (N− ετ ) are all less than − ρ + λ. Further-
more, the singularities of ZS (s+ ρ− λ, τ) that correspond
to AY (γτ , τ) are contained in the union of the interval
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[−2ρ+ λ, λ] with the line −ρ + λ + iR. An overlap
between these two kinds of singularities may occur inside
[−2ρ+ λ,−ρ+ λ) (see, [6, pp. 114–115]).

The integers 0, −1, ... , −2n are simple poles of
xs+2n

s(s+1)...(s+2n) . These integers may also appear as simple poles

of Z
′
S(s+ρ−λ,τ)

ZS(s+ρ−λ,τ) , i.e., as singularities of ZS (s+ ρ− λ, τ).
Denote by Ip,τ,λ the set of such integers. Put I

′

p,τ,λ to be the
difference {0,−1, ...,−2n} \Ip,τ,λ. The set of the remaining
singularities sp,τ,λ of ZS (s+ ρ− λ, τ) will be denoted by
Sp,τ,λ.

Reasoning as in [16, pp. 88–89], we write

Z
′

S (s+ ρ− λ, τ)

ZS (s+ ρ− λ, τ)
=
op,τ,λz

s− z

(
1 +

+∞∑
i=1

ap,τ,λi,z (s− z)i
)
,

where z is a singularity of ZS (s+ ρ− λ, τ) and op,τ,λz is the
order of z.

Now, for sp,τ,λ ∈ Sp,τ,λ,

csp,τ,λ (p, τ, λ)

= lim
s→sp,τ,λ

(
s− sp,τ,λ

)
Z
′
S(s+ρ−λ,τ)

ZS(s+ρ−λ,τ)
xs+2n

s(s+1)...(s+2n)

= lim
s→sp,τ,λ

(
s− sp,τ,λ

) op,τ,λ
sp,τ,λ

s− sp,τ,λ
·(

1 +
+∞∑
i=1

ap,τ,λ
i,sp,τ,λ

(
s− sp,τ,λ

)i) xs+2n

s(s+1)...(s+2n)

= op,τ,λ
sp,τ,λ

xs
p,τ,λ+2n

sp,τ,λ (sp,τ,λ + 1) ... (sp,τ,λ + 2n)
.

(14)

Let −j ∈ Ip,τ,λ. We have

c−j (p, τ, λ) = lim
s→−j

d
ds

(
(s+ j)

2 Z
′
S(s+ρ−λ,τ)

ZS(s+ρ−λ,τ)
xs+2n

s(s+1)...(s+2n)

)
.

Since

(s+ j)
2 Z

′

S (s+ ρ− λ, τ)

ZS (s+ ρ− λ, τ)

xs+2n

s (s+ 1) ... (s+ 2n)

= op,τ,λ−j

(
1 +

+∞∑
i=1

ap,τ,λi,−j (s+ j)
i

)
xs+2n

2n∏
l=0
l 6=j

(s+ l)

= op,τ,λ−j
xs+2n

2n∏
l=0
l 6=j

(s+ l)

+ op,τ,λ−j ap,τ,λ1,−j (s+ j)
xs+2n

2n∏
l=0
l 6=j

(s+ l)

+ ...

and

d
ds

(
(s+ j)

2 Z
′
S(s+ρ−λ,τ)

ZS(s+ρ−λ,τ)
xs+2n

s(s+1)...(s+2n)

)
=

op,τ,λ−j
2n∏
l=0
l 6=j

(s+ l)

xs+2n log x−
op,τ,λ−j

2n∏
l=0
l 6=j

(s+ l)

2n∑
l=0
l 6=j

1

s+ l
xs+2n

+
op,τ,λ−j

2n∏
l=0
l 6=j

(s+l)

ap,τ,λ1,−j x
s+2n + op,τ,λ−j ap,τ,λ1,−j (s+ j) d

ds

 xs+2n

2n∏
l=0
l 6=j

(s+l)

+ ...,

we obtain

c−j (p, τ, λ) =
op,τ,λ−j

2n∏
l=0
l 6=j

(−j+l)
x−j+2n log x

+
op,τ,λ−j

2n∏
l=0
l 6=j

(−j+l)

− 2n∑
l=0
l 6=j

1
−j+l + ap,τ,λ1,−j

x−j+2n.

(15)

Finally, let −j ∈ I ′p,τ,λ. Now,

c−j (p, τ, λ)

= lim
s→−j

(
(s+ j)

Z
′
S(s+ρ−λ,τ)

ZS(s+ρ−λ,τ)
xs+2n

s(s+1)...(s+2n)

)
=
Z
′

S (−j + ρ− λ, τ)

ZS (−j + ρ− λ, τ)

x−j+2n

2n∏
l=0
l 6=j

(−j + l)

.
(16)

We denote:

I−2n = {0,−1, ...,−2n} ,

Bp,τ,λ =
{
−j ∈ I−2n | c−j (p, τ, λ) = O

(
x2ρ n+ρ−1

n+2ρ−1

)}
,

B
′

p,τ,λ = I−2n\Bp,τ,λ,
Sp,τ,λR = Sp,τ,λ ∩ R,
Sp,τ,λ−ρ+λ = Sp,τ,λ\Sp,τ,λR ,

C1
p,τ,λ =

{
sp,τ,λ ∈ Sp,τ,λR | sp,τ,λ ≤ −2n− 1

}
,

C2
p,τ,λ =

{
sp,τ,λ ∈ Sp,τ,λR | −2n− 1 < sp,τ,λ ≤ −2n+ 2ρ n+ρ−1

n+2ρ−1

}
,

C3
p,τ,λ =

{
sp,τ,λ ∈ Sp,τ,λR | −2n+ 2ρ n+ρ−1

n+2ρ−1 < sp,τ,λ ≤ 2ρ n+ρ−1
n+2ρ−1

}
,

C4
p,τ,λ =

{
sp,τ,λ ∈ Sp,τ,λR | 2ρ n+ ρ− 1

n+ 2ρ− 1
< sp,τ,λ ≤ 2ρ

}
.

Now, we can write

∑
z∈Ap,τ,λ

cz (p, τ, λ)

=
∑

z∈Bp,τ,λ

cz (p, τ, λ) +
∑

z∈B′p,τ,λ

cz (p, τ, λ)

+
4∑
k=1

∑
z∈Ckp,τ,λ

cz (p, τ, λ) +
∑

z∈Sp,τ,λ−ρ+λ

cz (p, τ, λ) .

(17)

Consider the sum over C1
p,τ,λ in (17).
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Since C1
p,τ,λ ⊂ Sp,τ,λR ⊂ Sp,τ,λ and z ≤ 2n − 1 < −2ρ +

λ for z ∈ C1
p,τ,λ, it follows from (14) that

∑
z∈C1

p,τ,λ

cz (p, τ, λ)

=
∑

z∈C1
p,τ,λ

op,τ,λz

xz+2n

z (z + 1) ... (z + 2n)

= −2 (−1)
n
2 vol(Y )

vol(Xd)

∑
k≥ 1

T (2n+1−ρ+λ)+ετ

md (T (k − ετ ) , γτ , τ)

· x−T (k−ετ )−ρ+λ+2n

2n∏
l=0

(−T (k − ετ )− ρ+ λ+ l)

.

The fact that γτ is τ−admissible element yields md (s, γτ , τ)
= Pτ (s) for all 0 ≤ s ∈ L (τ) = T (ετ + Z). In par-
ticular, md (T (k − ετ ) , γτ , τ) = Pτ (T (k − ετ )) for k ≥
1
T (2n+ 1− ρ+ λ) + ετ . We obtain

∑
z∈C1

p,τ,λ

cz (p, τ, λ)

= O

(
x−1

∑
k≥ 1

T (2n+1−ρ+λ)+ετ

|Pτ (T (k−ετ ))|
(T (k−ετ )+ρ−λ−2n)2n+1

)

= O

(
x−1

∑
k≥ 1

T (2n+1−ρ+λ)+ετ

(2n+1−ρ+λ+Tετ )2n+1|Pτ (T (k−ετ ))|
T 2n+1k2n+1

)
.

Hence, by Lemma 2,

∑
z∈C1

p,τ,λ

cz (p, τ, λ)

= O

(
x−1

∑
k≥ 1

T (2n+1−ρ+λ)+ετ

1
kn+2

)
= O

(
x−1

)
.

(18)

The sum over Bp,τ,λ in (17) is a finite one. Therefore, by
the definition of Bp,τ,λ,∑

z∈Bp,τ,λ

cz (p, τ, λ) = O
(
x2ρ n+ρ−1

n+2ρ−1

)
. (19)

The sum over C2
p,τ,λ is a finite one as well. Hence, by (14),∑

z∈C2
p,τ,λ

cz (p, τ, λ)

=
∑

z∈C2
p,τ,λ

op,τ,λz
xz+2n

z(z+1)...(z+2n) = O
(
x2ρ n+ρ−1

n+2ρ−1

)
.

(20)

Combining (13) and (17)–(20), we obtain

ψ2n (x)

=
n−1∑
p=0

(−1)
p+1

∑
(τ,λ)∈Ip

∑
z∈B′p,τ,λ

cz (p, τ, λ)

+
n−1∑
p=0

(−1)
p+1

∑
(τ,λ)∈Ip

∑
z∈C3

p,τ,λ

cz (p, τ, λ) +

n−1∑
p=0

(−1)
p+1

∑
(τ,λ)∈Ip

∑
z∈C4

p,τ,λ

cz (p, τ, λ)

+
n−1∑
p=0

(−1)
p+1

∑
(τ,λ)∈Ip

∑
z∈Sp,τ,λ−ρ+λ

cz (p, τ, λ)

+O
(
x2ρ n+ρ−1

n+2ρ−1

)
.

(21)

Suppose 1 < h ≤ x
2 .

We introduce the operator

∆+
2nf (x) =

2n∑
i=0

(−1)
i

(
2n

i

)
f (x+ (2n− i)h) . (22)

If f is at least 2n times differentiable function, then

∆+
2nf (x) =

x+h∫
x

t2n+h∫
t2n

...

t2+h∫
t2

f (2n) (t1) dt1...dt2n. (23)

The mean value theorem applied to (23) yields

∆+
2nf (x) = h2nf (2n) (x̃) , (24)

where x̃ ∈ [x, x+ 2nh].
Since ψ0 is nondecreasing, we obtain

ψ0 (x) ≤ h−2n∆+
2nψ2n (x) ≤ ψ0 (x+ 2nh) . (25)

Now, (21), (22) and the fact that h ≤ x
2 , imply

h−2n∆+
2nψ2n (x)

=
n−1∑
p=0

(−1)
p+1 ∑

(τ,λ)∈Ip

∑
z∈B′p,τ,λ

h−2n∆+
2ncz (p, τ, λ)

+
n−1∑
p=0

(−1)
p+1 ∑

(τ,λ)∈Ip

∑
z∈C3

p,τ,λ

h−2n∆+
2ncz (p, τ, λ)

+
n−1∑
p=0

(−1)
p+1 ∑

(τ,λ)∈Ip

∑
z∈C4

p,τ,λ

h−2n∆+
2ncz (p, τ, λ)

+
n−1∑
p=0

(−1)
p+1 ∑

(τ,λ)∈Ip

∑
z∈Sp,τ,λ−ρ+λ

h−2n∆+
2ncz (p, τ, λ)

+O
(
h−2nx2ρ n+ρ−1

n+2ρ−1

)
.

(26)

Consider the sum over B
′

p,τ,λ on the right hand side of (26).
Let z ∈ B′p,τ,λ, z = 0.
Suppose that 0 ∈ Ip,τ,λ. Then, (15), (24) and the facts:

(xn log x)
(n)

= n! log x + n!
∑n
l=1

1
l , (xn)

(n)
= n!, yield

h−2n∆+
2nc0 (p, τ, λ) = op,τ,λ0 log x̃p,τ,λ,0 + op,τ,λ0 ap,τ,λ1,0 , (27)

where x̃p,τ,λ,0 ∈ [x, x+ 2nh].
If 0 ∈ I ′p,τ,λ, then
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h−2n∆+
2nc0 (p, τ, λ) =

Z
′

S (ρ− λ, τ)

ZS (ρ− λ, τ)
(28)

by (16). Let z ∈ B′p,τ,λ, z = −j ≤ −1.
Suppose that −j ∈ Ip,τ,λ.
Since

(
xk log x

)(n)
= k! (−1)

n−k−1 (n−k−1)!
xn−k

and
(
xk
)(n)

= 0 for 0 ≤ k < n, k ∈ N, we get

h−2n∆+
2nc−j (p, τ, λ) = op,τ,λ−j

x̃−jp,τ,λ,−j
−j

, (29)

where x̃p,τ,λ,−j ∈ [x, x+ 2nh].
If −j ∈ I ′p,τ,λ, then

h−2n∆+
2nc−j (p, τ, λ) = 0. (30)

Now, (27)–(30) and the fact that h ≤ x
2 , imply∑

z∈B′p,τ,λ

h−2n∆+
2ncz (p, τ, λ) = O (log x) . (31)

Consider the sum over C3
p,τ,λ on the right hand side of (26).

Let z ∈ C3
p,τ,λ.

By (14) and (24),

∣∣h−2n∆+
2ncz (p, τ, λ)

∣∣ =
∣∣∣op,τ,λz

x̃zp,τ,λ,z
z

∣∣∣
=
|op,τ,λz |
|z| x̃zp,τ,λ,z ≤

|op,τ,λz |
|z| x̃

2ρ n+ρ−1
n+2ρ−1

p,τ,λ,z ,

where x̃p,τ,λ,z ∈ [x, x+ 2nh]. Hence, h ≤ x
2 and the fact that

C3
p,τ,λ is a finite set, yield

∑
z∈C3

p,τ,λ

h−2n∆+
2ncz (p, τ, λ) = O

(
x2ρ n+ρ−1

n+2ρ−1

)
. (32)

Similarly, the sum over C4
p,τ,λ on the right hand side of (26)

is a finite one. We have

h−2n∆+
2ncsp,τ,λ (p, τ, λ) = op,τ,λ

sp,τ,λ

x̃s
p,τ,λ

sp,τ,λ

sp,τ,λ

for sp,τ,λ ∈ C4
p,τ,λ, where x̃sp,τ,λ ∈ [x, x+ 2nh]. Hence,

reasoning as in [20, p. 246] and [19, p. 101], we obtain∑
z∈C4

p,τ,λ

h−2n∆+
2ncz (p, τ, λ)

=
∑

sp,τ,λ∈(2ρ n+ρ−1
n+2ρ−1 ,2ρ]

xs
p,τ,λ

sp,τ,λ
+O

(
h2ρ
)
,

(33)

where sp,τ,λ is counted op,τ,λ
sp,τ,λ

times in the last sum.
Finally, we estimate the sum over Sp,τ,λ−ρ+λ in (26). Let z ∈

Sp,τ,λ−ρ+λ. By (14),

cz (p, τ, λ) = op,τ,λz

xz+2n

z (z + 1) ... (z + 2n)
.

We derive two estimates for h−2n∆+
2ncz (p, τ, λ).

Firstly, by (22),

h−2n∆+
2ncz (p, τ, λ)

= h−2n op,τ,λz

z(z+1)...(z+2n)

2n∑
i=0

(−1)
i (2n

i

)
(x+ (2n− i)h)

z+2n
.

Since h ≤ x
2 , we obtain

h−2n∆+
2ncz (p, τ, λ) = O

(
h−2n |z|−2n−1

x−ρ+λ+2n
)
. (34)

Secondly, by (23),

∣∣h−2n∆+
2ncz (p, τ, λ)

∣∣
=

∣∣∣∣∣∣h−2n o
p,τ,λ
z

z

x+h∫
x

t2n+h∫
t2n

...

t2+h∫
t2

tz1dt1...dt2n

∣∣∣∣∣∣
≤ h−2n

∣∣op,τ,λz

∣∣ |z|−1

x+h∫
x

t2n+h∫
t2n

...

t2+h∫
t2

t−ρ+λ1 dt1...dt2n.

Hence, by the mean value theorem and the fact that h ≤ x
2 ,

h−2n∆+
2ncz (p, τ, λ) = O

(
|z|−1

x−ρ+λ
)
. (35)

Let M > 2ρ. Now, using (34) and (35), we deduce

∑
z∈Sp,τ,λ−ρ+λ

h−2n∆+
2ncz (p, τ, λ)

=
∑

z∈Sp,τ,λ−ρ+λ
|−ρ+λ|<|z|≤M

h−2n∆+
2ncz (p, τ, λ) +

∑
z∈Sp,τ,λ−ρ+λ
|z|>M

h−2n∆+
2ncz (p, τ, λ)

(36)

= O

x−ρ+λ ∑
z∈Sp,τ,λ−ρ+λ

|−ρ+λ|<|z|≤M

|z|−1

+ O

h−2nx−ρ+λ+2n
∑

z∈Sp,τ,λ−ρ+λ
|z|>M

|z|−2n−1


= O

(
x−ρ+λ

M∫
|−ρ+λ|

t−1dNp,τ,λ (t)

)
+ O

(
h−2nx−ρ+λ+2n

+∞∫
M

t−2n−1dNp,τ,λ (t)

)
= O

(
x−ρ+λMn−1

)
+O

(
h−2nx−ρ+λ+2nM−n−1

)
,

where Np,τ,λ (t) = O (tn) denotes the number of singularities
of ZS (s+ ρ− λ, τ) on the interval −ρ + λ + ix, 0 < x ≤
t.

Combining (26), (31)–(33) and (36), we obtain
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h−2n∆+
2nψ2n (x)

=
n−1∑
p=0

(−1)
p+1 ∑

(τ,λ)∈Ip

∑
sp,τ,λ∈(2ρ n+ρ−1

n+2ρ−1 ,2ρ]

xs
p,τ,λ

sp,τ,λ

+ O
(
h2ρ
)

+ O
(
xρMn−1

)
+O

(
h−2nxρ+2nM−n−1

)
+ O

(
x2ρ n+ρ−1

n+2ρ−1

)
.

(37)

Substituting h = x
n+ρ−1
n+2ρ−1 , M = x

ρ
n+2ρ−1 into (37) and

taking into account (25), we get

ψ0 (x)≤
n−1∑
p=0

(−1)
p+1 ∑

(τ,λ)∈Ip

∑
sp,τ,λ∈(2ρ n+ρ−1

n+2ρ−1 ,2ρ]

xs
p,τ,λ

sp,τ,λ

+O
(
x2ρ n+ρ−1

n+2ρ−1

)
.

(38)

Analogously, (see, e.g., [19, pp. 101–102]), one proves

ψ0 (x)≥
n−1∑
p=0

(−1)
p+1 ∑

(τ,λ)∈Ip

∑
sp,τ,λ∈(2ρ n+ρ−1

n+2ρ−1 ,2ρ]

xs
p,τ,λ

sp,τ,λ

+O
(
x2ρ n+ρ−1

n+2ρ−1

)
.

(39)

Combining (38) and (39), we conclude that

ψ0 (x)=
n−1∑
p=0

(−1)
p+1 ∑

(τ,λ)∈Ip

∑
sp,τ,λ∈(2ρ n+ρ−1

n+2ρ−1 ,2ρ]

xs
p,τ,λ

sp,τ,λ

+O
(
x2ρ n+ρ−1

n+2ρ−1

)
.

(40)

Now, using (40) and following lines of [19, p. 102], we
finally obtain

πΓ (x)=
n−1∑
p=0

(−1)
p+1 ∑

(τ,λ)∈Ip

∑
sp,τ,λ∈(2ρ n+ρ−1

n+2ρ−1 ,2ρ]
li
(
xs

p,τ,λ
)

+O
(
x2ρ n+ρ−1

n+2ρ−1 (log x)
−1
)

as x→ +∞. This completes the proof.

VI. CONCLUDING REMARKS

Let us summarize the aspects in which Theorem 5 represents
an improvement of (1).

As already mentioned in the Introduction, X is one of the
following spaces:

HRk (k even, k ≥ 2), HCm (m ≥ 1), HHl (l ≥ 1), HCa2.

Hence, n = k, 2m, 4l, 16 and ρ = 1
2 (k − 1), m, 2l + 1, 11,

respectively.
Since HC1 ∼= HR2 and HH1 ∼= HR4 (see, e.g., [15]), we

may assume m ≥ 2 and l ≥ 2.

Now, α = n+ q − 1 = k − 1, 2m, 4l+ 2, 22, respectively.
Obviously, α = 2ρ.

The size of the error term in (1) is O
(
x(1− 1

2n )2ρ
)

. We

compare this bound to our bound O
(
x2ρ n+ρ−1

n+2ρ−1 (log x)
−1
)

.

The factor (log x)
−1 gives to our bound some advantage.

However, let us have a look at the corresponding powers of
x.

The inequality

2ρ
n+ ρ− 1

n+ 2ρ− 1
≤
(

1− 1

2n

)
2ρ

always holds true since the corresponding equivalent inequal-
ity (n− 1) (2ρ− 1) ≥ 0 is always valid. Here, the equality
sign occurs only if X = HR2.

Furthermore, the inequalities

2ρ
n+ ρ− 1

n+ 2ρ− 1
≤ 3

2
ρ ≤

(
1− 1

2n

)
2ρ

are always true.
Indeed, the left-hand inequality is valid, being equivalent to

the inequality n ≤ 2ρ + 1. The equality occurs only if X =
HRk, k ≥ 2, k even.

On the other side, the right-hand inequality holds also true
since it reduces to n−2 ≥ 0. Clearly, the right-hand inequality
becomes equality only if X = HR2.

Summarizing results derived above, we end up with the
conclusion that the obtained bound O

(
x2ρ n+ρ−1

n+2ρ−1 (log x)
−1
)

is of the form O
(
xθ (log x)

−1
)

, where θ < 3
2ρ if X = HCm,

(m ≥ 2), HHl, (l ≥ 2), HCa2 and θ = 3
2ρ if X = HRk, k

even, k ≥ 2.
Note that our result coincides with the best known results

for the compact Riemann surfaces [20] and the real hyperbolic
manifolds with cusps [1].

Also, note that taking k > 2n in the proof of Theorem 5
does not yield a better result.
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